行业知识图谱数据来源?
通过收集来自百科类站点和各种垂直站点的结构化数据来覆盖大部分常识性知识
知识图谱和对话系统原理?
知识图谱和对话系统原理是旨在描述真实世界中存在的各种实体或概念。其中,每个实体或概念用一个全局唯一确定的ID来标识,称为它们的标识符(identifier)。每个属性-值对(attribute-value pair,又称AVP)用来刻画实体的内在特性,而关系(relation)用来连接两个实体,刻画它们之间的关联。知识图谱亦可被看作是一张巨大的图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。
知识图谱属于自然语言处理么?
不属于。知识图谱是在NLP的基础上发展而来的。它的核心是知识库。
一般来讲,知识图谱主要目标是用来描述真实世界中存在的各种实体和概念,以及他们之间的关系,通过这种关系来描述实体之间的关联。目前,知识图谱在自然语言处理领域有两大类的应用:1)搜索和问答领域。2)自然语言理解类的场景,比如在具体的机器翻译领域,句法分析相关的工作。