微生物小知识英文版
1.谁能帮我找一篇与微生物有关的英文文章``````
posers. As some microorganisms can fix nitrogen, they are a vital part of the nitrogen cycle, and recent studies indicate that airborne microbes may play a role in precipitation and weather.Microbes are also exploited by people in biotechnology, both in traditional food and beverage preparation, as well as modern technologies based on genetic engineering. However, pathogenic microbes are harmful, since they invade and grow within other organisms, causing diseases that kill millions of people, other animals, and plants.-celled microorganisms were the first forms of life to develop on earth, approximately 3–4 billion years ago.Further evolution was slow,and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms.Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms has changed little since the triassic period.Most microorganisms can reproduce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transduction between widely-divergent species.[10] This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution is important in medicine, as it has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics.Pre-MicrobiologyThe possibility that microorganisms might exist was discussed for many centuries before their actual discovery in the 17th century. The first ideas about microorganisms were those of the Roman scholar Marcus Terentius Varro in a book titled On Agriculture in which he warns against locating a homestead near swamps:“ …and because there are bred certain minute creatures which cannot be seen by the eyes, which float in the air and enter the body through the mouth and nose and there cause serious diseases.” This passage seems to indicate that the ancients were aware of the possibility that diseases could be spread by yet unseen organisms.In The Canon of Medicine (1020), Abū Alī ibn Sīnā (Avicenna) stated that bodily secretion is contaminated by foul foreign earthly bodies before being infected.He also hypothesized that tuberculosis and other diseases might be contagious, i.e. that they were infectious diseases, and used quarantine to limit their spread.When the Black Death bubonic plague reached al-Andalus in the 14th century, Ibn Khatima wrote that infectious diseases were caused by "contagious entities" that enter the human body. Later, in 1546, Girolamo Fracastoro proposed that epidemic diseases were caused by transferable seedlike entities that could transmit infection by direct or indirect contact, or even without contact over long distances.All these early claims about the existence of microorganisms were speculative in nature and not based on any data or science. Microorganisms were neither proven, observed, nor correctly and accurately described until the 17th century. The reason for this was that all these early inquiries lacked the most fundamental tool in order for microbiology and bact。
2.微生物 特点英文
EvolutionSingle-celled microorganisms were the first forms of life to develop on earth, approximately 3–4 billion years ago. Further evolution was slow, and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms. Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms have changed little since the triassic period.Most microorganisms can reproduce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transduction between widely-divergent species. This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics. are vital to humans and the environment, as they participate in the Earth's element cycles such as the carbon cycle and nitrogen cycle, as well as fulfilling other vital roles in virtually all ecosystems, such as recycling other organisms' dead remains and waste products through decomposition. Microbes also have an important place in most higher-order multicellular organisms as symbionts. Many blame the failure of Biosphere 2 on an improper balance of microbes.Use in foodMicroorganisms are used in brewing, baking and other food-making processes.The lactobacillus / lactobacilli and yeasts in sourdough bread are especially useful. To make bread, one uses a small amount (20-25%) of "starter" dough which has the yeast culture, and mixes it with flour and water. Some of this resulting dough is then saved to be used as the starter for subsequent batches. The culture can be kept at room temperature and continue yielding bread for years as long as it remains supplied with new flour and water. This technique was often used when "on the trail" in the American Old West.Microorganisms are also used to control the fermentation process in the production of cultured dairy products such as yogurt and cheese. The cultures also provide flavour and aroma, and to inhibit undesirable organisms.Use in water treatmentMicrobes are used in the biological treatment of sewage and industrial waste effluents.Use in energyMicrobes are used in fermentation to produce ethanol.Use in scienceMicrobes are also essential tools in biotechnology, biochemistry, genetics, and molecular biology. Microbes can be harnessed for uses such as creating steroids and treating skin diseases. Scientists are also considering using microbes for living fuel cells, and as a solution for pollution.Use in warfareIn the Middle Ages, dead corpses were thrown over walls during sieges, this meant that any bacteria carrying the disease that killed the person/creature would multiply in the vicinity of the opposing side.。
3.we微生物小短文300字
大家生病的时候,知道是什么在作怪吗?我们吃的面包是由什么变得膨胀呢?我们吃的蘑菇又叫做什么呢?对了,他们都是微生物。现在,就和我一起走进微生物的世界吧。
读了“神奇校车”之《走进微生物》这本书,我明白了很多知识呢!
微生物一般分为五类:真菌、细菌、病菌、藻类和原生动物,它们已经在地球上生存了35亿多年了,比植物、恐龙和其他任何生物都早,比我们人类更是早多了。为什么呢?这是因为,微生物是地球上最早出现的生命形式,喂养着所有生命。没有它们,就没有现在地球上多姿多彩的世界了。厉害吧?
微生物很小很小,要不怎么叫做微生物呢?(*^__^*) 嘻嘻……但是,微生物虽然小,功劳很大。面包膨胀就是微生物的功劳,我们每天呼吸的氧气,很多也是微生物产生的;还有我们喝的酸奶,生病时吃的药物等等,它们对我们的帮助可大了。
大多数微生物都是看不见的,比如真菌。说起真菌,我们最常见到的就是蘑菇了。据说在美国一个地方长着最大最大的蘑菇真菌,大到10吨多重,真是不可想象啊。
微生物最喜欢潮湿、阴暗的角落了,而不喜欢太热或者太冷。所以我们经常把食物放进冰箱里,就是为了不被这些微生物破坏了。微生物最喜欢的是甜食了(和我们小朋友一样哦),甜食里的糖分能够帮助微生物快速生长和繁殖。微生物的生长可以分解食物残渣,产生二氧化碳和腐殖质(听着这么难受啊)。看来,以后刷牙要刷干净了,要不就会生病的。
说起疾病,也离不开微生物。病菌也是微生物的一种,它们通过我们身体上的伤口,或者手进入我们的身体,给我们制造麻烦。它们无孔不入,特别是当我们睡眠不足、饮食不佳而疲倦时,更容易侵袭我们。据说有超过200多种的病毒让我们感冒、发烧。我说呢,很多同学动不动就感冒了。所以,我们要坚持锻炼身体,饭前便后把手洗干净,不给病毒留机会。
也有好的微生物,对我们的日常生活帮助很大。比如,我们吃的馒头发酵的东西叫做酶。这种酶除了让面包、馒头发起来之外,还能用来做酸奶、酱油、纸张、洗衣粉、口香糖呢,真是不简单。更有一些微生物能够“打击”病毒类的微生物,消灭这些“害人虫”,让我们生病的身体尽快康复。
看了这本书,我不但知道了微生物有很多种,有的对我们有害,有的对我们有益,而且还知道了,在我们的生活中,一时一刻也离不开微生物。当然,微生物更离不开我们。
4.微生物小知识
20
世纪以来,生物化学和生物物理学向微生物学渗透,再加上电子显微镜的发明和同
位素示踪原子的应用,推动了微生物学向生物化学阶段的发展。
1897
年德国学者毕希纳发
现酵母菌的无细胞提取液能与酵母一样具有发酵糖液产生乙醇的作用,
从而认识了酵母菌酒
精发酵的酶促过程,将微生物生命活动与酶化学结合起来。
诺伊贝格等人对酵母菌生理的研究和对酒精发酵中间产物的分析,
克勒伊沃对微生物代
谢的研究以及他所开拓的比较生物化学的研究方向,
其他许多人以大肠杆菌为材料所进行的
一系列基本生理和代谢途径的研究,都阐明了生物体的代谢规律和控制其代谢的基本原理,
并且在控制微生物代谢的基础上扩大利用微生物,发展酶学,推动了生物化学的发展。从
20
世纪
30
年代起,人们利用微生物进行乙醇、丙酮、丁醇、甘油、各种有机酸、氨基酸、
蛋白质、油脂等的工业化生产。
1929
年,弗莱明发现青霉菌能抑制葡萄球菌的生长,揭示了微生物间的拮抗关系,并
发现了青霉素。
1949
年,瓦克斯曼在他多年研究土壤微生物所积累资料的基础上,发现了
链霉素。
此后陆续发现的新抗生素越来越多。
这些抗生素除医用外,
也应用于防治动植物的
病害和食品保藏。
1941
年,比德尔和塔特姆用
X
射线和紫外线照射链孢霉,使其产生变异,获得营养缺
陷型。
他们对营养缺陷型的研究不仅可以进一步了解基因的作用和本质,
而且为分子遗传学
打下了基础。
1944
年,埃弗里第一次证实了引起肺炎球菌形成荚膜遗传性状转化的物质是
脱氧核糖核酸
(DNA)
1953
年,沃森和克里克提出了
DNA
分子的双螺旋结构模型和核酸半
保留复制学说。
富兰克尔
-
康拉特等通过烟草花叶病毒重组试验,证明核糖核酸
(RNA)
是遗传信息的载
体,为奠定分子生物学基础起了重要作用。其后,又相继发现转运核糖核酸
(tRNA)
的作用机
制、
基因三联密码的论说、
病毒的细微结构和感染增殖过程、
生物固氮机制等微生物学中的
重要理论,展示了微生物学广阔的应用前景。
1957
年,科恩伯格等成功地进行了
DNA
的体外组合和操纵。近年来,原核微生物基因
重组的研究不断获得进展,
胰岛素已用基因转移的大肠杆菌发酵生产,
干扰素也已开始用细
菌生产。现代微生物学的研究将继续向分子水平深入,向生产的深度和广度发展。
在微生物学的发展过程中,
按照研究内容和目的的不同,
相继建立了许多分支学科:
研
究微生物基本性状的有关基础理论的有微生物形态学、
微生物分类学、
微生物生理学、
微生
物遗传学和微生物生态学;
研究微生物各个类群的有细菌学、
真菌学、
藻类学、
原生动物学、
病毒学等;
研究在实践中应用微生物的有医学微生物学、
工业微生物学、
农业微生物学、
食
品微生物学、乳品微生物学、石油微生物学、土壤微生物学、水的微生物学饲料微生物学、
环境微生物学、免疫学等。
由于微生物学各分支学科的相互配合、
互相促进,
以及与生物化学、
生物物理学、
分子
生物学等学科的相互渗透,使其在基础理论研究和实际应用两方面都有了迅速的发展
5.微生物小知识
20
世纪以来,生物化学和生物物理学向微生物学渗透,再加上电子显微镜的发明和同
位素示踪原子的应用,推动了微生物学向生物化学阶段的发展。
1897
年德国学者毕希纳发
现酵母菌的无细胞提取液能与酵母一样具有发酵糖液产生乙醇的作用,
从而认识了酵母菌酒
精发酵的酶促过程,将微生物生命活动与酶化学结合起来。
诺伊贝格等人对酵母菌生理的研究和对酒精发酵中间产物的分析,
克勒伊沃对微生物代
谢的研究以及他所开拓的比较生物化学的研究方向,
其他许多人以大肠杆菌为材料所进行的
一系列基本生理和代谢途径的研究,都阐明了生物体的代谢规律和控制其代谢的基本原理,
并且在控制微生物代谢的基础上扩大利用微生物,发展酶学,推动了生物化学的发展。从
20
世纪
30
年代起,人们利用微生物进行乙醇、丙酮、丁醇、甘油、各种有机酸、氨基酸、
蛋白质、油脂等的工业化生产。
1929
年,弗莱明发现青霉菌能抑制葡萄球菌的生长,揭示了微生物间的拮抗关系,并
发现了青霉素。
1949
年,瓦克斯曼在他多年研究土壤微生物所积累资料的基础上,发现了
链霉素。
此后陆续发现的新抗生素越来越多。
这些抗生素除医用外,
也应用于防治动植物的
病害和食品保藏。
1941
年,比德尔和塔特姆用
X
射线和紫外线照射链孢霉,使其产生变异,获得营养缺
陷型。
他们对营养缺陷型的研究不仅可以进一步了解基因的作用和本质,
而且为分子遗传学
打下了基础。
1944
年,埃弗里第一次证实了引起肺炎球菌形成荚膜遗传性状转化的物质是
脱氧核糖核酸
(DNA)
1953
年,沃森和克里克提出了
DNA
分子的双螺旋结构模型和核酸半
保留复制学说。
富兰克尔
-
康拉特等通过烟草花叶病毒重组试验,证明核糖核酸
(RNA)
是遗传信息的载
体,为奠定分子生物学基础起了重要作用。其后,又相继发现转运核糖核酸
(tRNA)
的作用机
制、
基因三联密码的论说、
病毒的细微结构和感染增殖过程、
生物固氮机制等微生物学中的
重要理论,展示了微生物学广阔的应用前景。
1957
年,科恩伯格等成功地进行了
DNA
的体外组合和操纵。近年来,原核微生物基因
重组的研究不断获得进展,
胰岛素已用基因转移的大肠杆菌发酵生产,
干扰素也已开始用细
菌生产。现代微生物学的研究将继续向分子水平深入,向生产的深度和广度发展。
在微生物学的发展过程中,
按照研究内容和目的的不同,
相继建立了许多分支学科:
研
究微生物基本性状的有关基础理论的有微生物形态学、
微生物分类学、
微生物生理学、
微生
物遗传学和微生物生态学;
研究微生物各个类群的有细菌学、
真菌学、
藻类学、
原生动物学、
病毒学等;
研究在实践中应用微生物的有医学微生物学、
工业微生物学、
农业微生物学、
食
品微生物学、乳品微生物学、石油微生物学、土壤微生物学、水的微生物学饲料微生物学、
环境微生物学、免疫学等。
由于微生物学各分支学科的相互配合、
互相促进,
以及与生物化学、
生物物理学、
分子
生物学等学科的相互渗透,使其在基础理论研究和实际应用两方面都有了迅速的发展
6.帮忙翻译一下 生物类小段落 英语牛人也来(汗
Course Description
This course describes the way in plain form of micro-organisms, species, distribution, nutrition, metabolism, and other basic knowledge of disinfection and sterilization and micro-organisms in industry, agriculture, environmental protection, medicine and health, food, renewable energy, scientific research and human society life in all aspects of special effects, and describes the microbiology of some new research.
Second, the teaching objectives and tasks
This course is the science of public elective undergraduate, plain way of describing the form of micro-organisms, species, distribution, nutrition, metabolism, and basic knowledge of disinfection and sterilization
Through this course, guide students to the relationship between microbes and humans have a systematic and scientific knowledge, can take advantage of what they have learned the basic knowledge of microbiology science to guide their lives, consciously protecting our environment.
7.微生物 特点英文
EvolutionSingle-celled microorganisms were the first forms of life to develop on earth, approximately 3–4 billion years ago. Further evolution was slow, and for about 3 billion years in the Precambrian eon, all organisms were microscopic. So, for most of the history of life on Earth the only form of life were microorganisms. Bacteria, algae and fungi have been identified in amber that is 220 million years old, which shows that the morphology of microorganisms have changed little since the triassic period.Most microorganisms can reproduce rapidly and microbes such as bacteria can also freely exchange genes by conjugation, transformation and transduction between widely-divergent species. This horizontal gene transfer, coupled with a high mutation rate and many other means of genetic variation, allows microorganisms to swiftly evolve (via natural selection) to survive in new environments and respond to environmental stresses. This rapid evolution has led to the recent development of 'super-bugs' — pathogenic bacteria that are resistant to modern antibiotics. are vital to humans and the environment, as they participate in the Earth's element cycles such as the carbon cycle and nitrogen cycle, as well as fulfilling other vital roles in virtually all ecosystems, such as recycling other organisms' dead remains and waste products through decomposition. Microbes also have an important place in most higher-order multicellular organisms as symbionts. Many blame the failure of Biosphere 2 on an improper balance of microbes.Use in foodMicroorganisms are used in brewing, baking and other food-making processes.The lactobacillus / lactobacilli and yeasts in sourdough bread are especially useful. To make bread, one uses a small amount (20-25%) of "starter" dough which has the yeast culture, and mixes it with flour and water. Some of this resulting dough is then saved to be used as the starter for subsequent batches. The culture can be kept at room temperature and continue yielding bread for years as long as it remains supplied with new flour and water. This technique was often used when "on the trail" in the American Old West.Microorganisms are also used to control the fermentation process in the production of cultured dairy products such as yogurt and cheese. The cultures also provide flavour and aroma, and to inhibit undesirable organisms.Use in water treatmentMicrobes are used in the biological treatment of sewage and industrial waste effluents.Use in energyMicrobes are used in fermentation to produce ethanol.Use in scienceMicrobes are also essential tools in biotechnology, biochemistry, genetics, and molecular biology. Microbes can be harnessed for uses such as creating steroids and treating skin diseases. Scientists are also considering using microbes for living fuel cells, and as a solution for pollution.Use in warfareIn the Middle Ages, dead corpses were thrown over walls during sieges, this meant that any bacteria carrying the disease that killed the person/creature would multiply in the vicinity of the opposing side.。