图形平移旋转的知识点
1.数学问题:第三章 图形的平移与旋转
北京师范大学 版本
第三章 图形的平移与旋转
1、平移定义和规律
(1)平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(Translation)。
关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。
b. 图形平移三要素:原位置、平移方向、平移距离。
(2)平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。
注意:平移后,原图形与平移后的图形全等。
(3)简单的平移作图:
平移作图要注意:①方向;②距离。整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
2、旋转的定义和规律
(1)旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(Circumrotate)。这个定点称为旋转中心;转动的角称为旋转角。
关键:a. 旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。
b. 图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。
(2)旋转的规律(性质):
经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。(旋转前后两个图形的对应线段相等、对应角相等。)
注意:旋转后,原图形与旋转后的图形全等。
(3)简单的旋转作图:
旋转作图要注意:①旋转方向;②旋转角度。整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。
3、图案的分析与设计
① 首先找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。
② 图案设计的基本手段主要有:轴对称、平移、旋转三种方法。
4、轴对称知识回顾
(1)轴对称图形定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形(Axially Symmetric Figure)。折痕所在的直线叫做对称轴。
(2)两个图形成轴对称:对于两个图形来说,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴。
(3)注意:
① 轴对称是说两个图形的位置关系;而轴对称图形是说一个具有特殊形状的图形。
② 成轴对称的两个图形,必定是全等图形。
(4)轴对称的性质:对应点所连的线段被对称轴垂直平分;对应线段相等;对应角相等。
(3)简单的轴对称作图:
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点。后依次连结各特征点即可。
说明:个人学习时总结,请酌情参考使用~~~~~,相信会对你有所帮助的。
2.平移和旋转的资料
平移是将一个图形从一个位置变换到另一个位置,平移过程中,各对应点的“前进方向”保持平行,旋转是一个图形绕着一个定点旋转一定的角度,旋转变换和平移都不改变图形的形状和大小,各对应点之间的距离也保持不变,所以这样的变换又叫保距变换。
在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
旋转 性质:
①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等。
旋转三要素:
①旋转中心;
②旋转方向;
③旋转角度。
3.平移和旋转的知识快点,急需
初中平移和旋转基础知识梳理: 1。
图形的平移 (1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小. 注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换. ②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据. ③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据. (2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等. 注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征. ②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据. (3)简单的平移作图 确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向; 2。 图形的旋转 (1)旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
理解旋转这一概念应注意以下两点: ①旋转和平移一样是图形的一种基本变换; ②图形旋转的决定因素是旋转中心和旋转的角度. (2)旋转的基本性质:图形中每一个点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段、对应角都相等,图形的形状、大小都不发生变化. (3)简单图形的旋转作图 两种情况:①给出绕着旋转的定点,旋转方向和旋转角的大小; ②给出定点和图形的一个特殊点旋转后的对应点. 作图步骤:①作出图形的几个关键点旋转后的对应点; ②顺次连接各点得到旋转后的图形. (4)图案设计:图案的设计是由基本图形经过适当的平移、旋转、轴对称等图形的变换而得到的。 其中中心对称是旋转变换的一种特例。
4.【如何认识平移、旋转和轴对称,它们的基本要素是什么
平移、旋转和轴对称是三个基本的全等变换.如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形进行的变换就叫做全等变换,它本质上是平面上两点之间的距离不发生变化,换句话说在原来的图形中,任意两点的距离假设是l的话,经过变换后的两点之间的距离仍是l,所以全等变换是一个保距变换,即保距离的一种变换,距离保持了以后,自然图形的形状、大小,都可以证明仍然是保持的.其实可以直观地想一想,两个能够互相重合的图形,要由这个图形运动得到那个图形,可以通过怎样的运动.我们以三角形为例,首先可以是平移,平移到一定位置上,或者说对于三角形有一个顶点能够重合了,这时候无非有两种情况:一种情况是两个三角形的三个顶点的顺序是一致的,这时需要经过旋转两个图形就重合了;还有一种情况是顶点的顺序相反,这时需要经过反射(翻折,轴对称)两个图形就重合了.上面的变换就是我们所说的平移、旋转变换和轴对称变换,它们是三种基本的全等变换.具体的什么叫平移,什么叫旋转,什么叫反射,我们不给出数学上严格的定义,而是直观地给予解释,并指出这些变换的基本要素.如上图,如果原图形中任意一个点到新图形中相对应点的连线方向相同,长度也相等,这样的全等变换称为平移变换,简称平移.也就是说,平移的基本特征是,图形平移前后“每一点与它对应点之间的连线互相平行并且相等”.显然,确定平移变换需要两个要素:方向、距离.对于平移,需要说明:1.基本图形:是什么图形发生了平移;2.方向:向什么方向发生了平移;3.距离:平移了多远.如上图,旋转的基本特征是图形旋转前后“对应点到旋转中心的距离相等,并且各组对应点与旋转中心连线的夹角都等于旋转的角度”.显然,确定旋转变换需要两个要素:旋转中心、旋转角(有方向).对于旋转,需要说明:1.基本图形:是什么图形发生了旋转;2.旋转中心:是绕哪个点旋转的;3.方向:向什么方向发生了旋转,是顺时针还是逆时针;4.角度:旋转了多大的角度.顺便提一句,旋转中心不一定必须是基本图形上的顶点,可以是平面上的任意一点.有的教师认为旋转中心就是图形的顶点是有误的.如果连接新图形与原图形中每一组对应点的线段都和同一条直线垂直且被该直线平分,这样的全等变换称为反射变换.垂直平分对称点所连线段的直线叫做对称轴.也就是说,反射变换的基本特征是“连接任意一组对应点的线段都被对称轴垂直平分”.显然,确定反射变换的关键在于找到对称轴.如果没找到您需要的资源,可到论坛相关版块查找或者发帖求助.友情提示:点此,查看更多课件、视频、教案、名师辅导、插图…。