力的分解知识总结
1.高一物理力学知识点急.关于力的分解的知识点
1.什么是力的分解 力的分解是力的合成的逆运算,概念:求一个力的分力的过程.同样遵守平行四边形定则. 如果一个力作用于某一物体上,它对物体产生的效果跟另外几个力同时作用于同一物体而共同产生的效果相同,这几个力就是那个力的分力.力的分解例如,在木板上固定两根橡皮绳,并在两绳结点处系上两根细线.如图3—65所示,用一竖直向下的力F把结点拉至某一位置O,注意观察拉力F所产生的效果.接着,用沿BO方向的拉力F1专门拉伸OB,沿AO方向的拉力F2专门拉伸OA,当F1、F2分别为适当值时,结点也被拉至位置O.F1、F2共同作用的效果与F作用的效果相同,F1、F2就叫做拉力F的分力.求一个力的分力叫做力的分解.在力的分解中,被分解的那个力(合力)是实际存在的,有对应的施力物体;而分力则是设想的几个力,没有与之对应的施力物体.2.如何进行力的分解力的分解是力的合成的逆运算,同样遵循平行四边形定则:把一个已知力作为平行四边形的对角线,那么于已知力共点的平行四边形的两条邻边就表示已知力的两个分力.然而,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形.力的分解为此,在分解某个力时,常可采用以下两种方式: ①按照力产生的实际效果进行分解——先根据力的实际作用效果确定分力的方向,再根据平行四边形定则求出分力的大小.②根据“正交分解法”进行分解——先合理选定直角坐标系,再将已知力投影到坐标轴上求出它的两个分量. 关于第②种分解方法,这里我们重点讲一下按实际效果分解力的几类典型问题:放在水平面上的物体所受斜向上拉力的分解 将物体放在弹簧台秤上,注意弹簧台秤的示数,然后作用一个水平拉力,再使拉力的方向从水平方向缓慢地向上偏转,台秤示数逐渐变小,说明拉力除有水平向前拉物体的效果外,还有竖直向上提物体的效果.所以,可将斜向上的拉力沿水平向前和竖直向上两个方向分解.斜面上物体重力的分解所示,在斜面上铺上一层海绵,放上一个圆柱形重物,可以观察到重物下滚的同时,还能使海绵形变有压力作用,从而说明为什么将重力分解成F1和F2这样两个分力.三角形定则即将两个分力首尾相接,则合力就是由f1尾端指向f2首端的有向线段. 把两个矢量首尾相接从而求出和矢量的方法,叫做三角形定则.平行四边形定则两个力合成时,两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这就叫做平行四边形定则正交分解法 研究对象受多个力,对其进行分析,有多种办法,我认为正交分解法不失为一好办法,虽然对较简单题用它显得繁琐一些,但对初学者,一会儿这方法,一会儿那方法,不如都用正交分解法(高中较为常用). 可对付一大片力学题,以后熟练些了,自然别的方法也就会了.正交分解法斜面应用正交分解法 物体受到多个力作用时求其合力,可将各个力沿两个相互垂直的方向直行正交分解,然后再分别沿这两个方向求出合力,正交分解法是处理多个力作用问题的基本方法,值得注意的是,对方向选择时,尽可能使落在、轴上的力多;被分解的力尽可能是已知力.步骤为: ①正确选择直角坐标系,一般选共点力的作用点为原点,水平方向或物体运动的加速度方向为X轴,使尽 量多的力在坐标轴上. ②正交分解各力,即分别将各力投影在坐标轴上,分别求出坐标轴上各力投影的合力. Fx=F1x+F2x+…+Fnx Fy=F1y+F2y+…+Fny ③共点力合力的大小为F=√Fx2+√Fy2(根号下Fx的平方加根号下Fy的平方),合力方向与X轴夹角 tank=Fy/Fx(即求出tan值,在和已知的tan值比较,进而得知k的度数) 例: 已知:F1,F2为F的分力,F的角度为37,物体重力为G,动摩擦因数为0.5. 求:f的大小,加速度的大小 F1=Sin37*F F2=Cos37*F f=μN=0.5*(G-Sin37*F) F合=F2-f=m*a a=(cos37*F-(0.5*(G-Sin37*F))/(G/g) 注;斜面上的重力分解 下滑力=mg·sin角度 正压力=mg·cos角度。
2.高一物理必修1重要知识点以及力的分解,力的合成的含义相关的知识点
第一章..定义:力是物体之间的相互作用。
理解要点: (1) 力具有物质性:力不能离开物体而存在。 说明:①对某一物体而言,可能有一个或多个施力物体。
②并非先有施力物体,后有受力物体 (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。 说明:①相互作用的物体可以直接接触,也可以不接触。
②力的大小用测力计测量。 (3)力具有矢量性:力不仅有大小,也有方向。
(4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。 (5)力的种类: ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。 说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。
重力 定义:由于受到地球的吸引而使物体受到的力叫重力。 说明:①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。 ③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。 (1)重力的大小:G=mg 说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。 ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2) 重力的方向:竖直向下(即垂直于水平面) 说明:①在两极与在赤道上的物体,所受重力的方向指向地心。 ②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。 重心的确定:①质量分布均匀。
物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。 ③薄板形物体的重心,可用悬挂法确定。
说明:①物体的重心可在物体上,也可在物体外。 ②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。 弹力 (1) 形变:物体的形状或体积的改变,叫做形变。
说明:①任何物体都能发生形变,不过有的形变比较明显,有的形变及其微小。 ②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。
(2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。 说明:①弹力产生的条件:接触;弹性形变。
②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。 ③弹力必须产生在同时形变的两物体间。
④弹力与弹性形变同时产生同时消失。 (3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。
几种典型的产生弹力的理想模型: ① 轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不同。
② 点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。 ③ 平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。
(4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动情况,利用平衡条件或运动学规律计算。
摩擦力 (1) 滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。 说明:①摩擦力的产生是由于物体表面不光滑造成的。
②摩擦力具有相互性。 ⅰ滑动摩擦力的产生条件:A.两个物体相互接触;B.两物体发生形变;C.两物体发生了相对滑动;D.接触面不光滑。
ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。 说明:①“与相对运动方向相反”不能等同于“与运动方向相反” ②滑动摩擦力可能起动力作用,也可能起阻力作用。
ⅲ滑动摩擦力的大小:F=μFN 说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。
②μ与接触面的材料、接触面的粗糙程度有关,无单位。 ③滑动摩擦力大小,与相对运动的速度大小无关。
ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。 ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。
(2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。 说明:静摩擦力的作用具有相互性。
ⅰ静摩擦力的产生条件:A.两物体相接触;B.相接触面不光滑;C.两物体有形变;D.两物体有相对运动趋势。 ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。
说明:①运动的物体可以受到静摩擦力的作用。 ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。
③静摩擦力可以是阻力也可以是动力。 ⅲ静摩。
3.力的分解怎样来总结
其实简单来说,力的分解可以看作是在平面直角坐标系中,以力的作用点为原点,在X轴Y轴方向上分解,把X轴Y轴的坐标表示出来就是力的分解了。
老师上课讲了一些,送给你吧1.力的分解求一已知力的分力的过程.①力的分解是力的合成的逆运算;②力的分解的原则是按照力的实际效果进行分解.(平行四边形定则)2.力的分解的三种类型:(1)已知合力和两个分力的方向,求两个分力的大小.(有唯一解)(2)已知合力和一个分力的大小与方向,求另一个分力的大小和方向.(有唯一解)(3)已知合力F、一个分力F1的大小与另一分力F2的方向,求F1的方向和F2的大小.(当F1=Fsinθ时,有唯一解;当FsinθF时,分解是唯一的)3.力的正交分解法:将已知力按互相垂直的两个方向进行分解的方法.其目的是将不同方向的矢量运算简化为同一直线上的代数运算.打字不易,请采纳。
4.力的合成和分解的一些知识
1、矢量和标量
(1)在物理学中物理量有两种:一是矢量(既有大小,又有方向的物理量),如力、位移、加速度等;
另一种是标量(只有大小,没有方向的物理量),如体积、路程、功、能等。
(2)矢量的合成均遵循平行四边形法则,而标量的运算则用代数加减。
(3)一直线上的矢量合成,可先规定正方向,与正方向相同的矢量方向均为正,与之相反则为负,然后
进行加减。
2、力的合成
(1)一个力如果产生的效果与几个力共同作用所产生的效果相同,这个力就叫做那几个的合力,而那几
个力就叫做这个力的分力,求几个力的合力叫力的合成。
(2)力的合成遵循平行四边形法则,如求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的有
向线段作为邻边,作一平行四边形,它的对角线即表示合力的大小和方向。
(3)共点的两个力F1、F2的合力F的大小,与两者的夹角有关,两个分力同向时合力最大,反向时合力最
小,即合力的取值范围为|F1-F2|≤F≤|F1+F2|
(4)合力可以大于等于两力中的任一个力,也可以小于任一个力。当两力大小一定时,合力随两力夹角
的增大而减小,随两力夹角的减小而增大。
3、力的分解
(1)由一个已知力求解它的分力叫力的分解。
(2)力的分解是力的合成的逆过程,也同样遵循平行四边形法则。
(3)由平行四边形法则可知,力的合成是惟一的,而力的分解则可能多解。但在处理实际问题时,力的
分解必须依据力的作用效果,答案同样是惟一的。
(4)把力沿着相互垂直的两个方向分解叫正交分解。如果物体受到多个力的共同作用时,一般常用正交
分解法,将各个力都分解到相互垂直的两个方向上,然后分别沿两个方向上求解。
三、难点知识剖析
1、力矢量三角形定则分析力最小的规律
(1)当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2的最小条件是:两个分力垂直,
如图(a)。最小的F2=Fsinα。
(2)当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F2与合
力F垂直,如图(b)。最小的F2=F1sinα。
(3)当已知合力F的大小及一个分力F1的大小时,另一个分力F2最小的条件是:已知大小的分力F1与合
力F同方向。最小的F2=|F-F1|。
具体看看这个网站,上面有黄冈中学老师的讲解
5.物理——力的分解
力的分解: 求一个力的分力叫力的分解。
是力的合成的逆运算,同样遵守平行四边形法则。一个力的分解应掌握下面几种情况: 1、已知一个力(大小和方向)和它的两个分力的方向,则两个分力有确定的值; 2、已知一个力和它的一个分力,则另一个分力有确定的值; 3、已知一个力和它的一个分力的方向,则另一分力有无数解,且有最小值(两分力方向垂直); 4、一个力可以在任意方向上分解,且能分解成无数个分力; 5、一个分力和产生这个分力的力是同性质力,且产生于同一施力物体,如图18中,G的分力是沿斜面的分力和垂直于斜面的分力(此力不能说成是对斜面的压力)。
6、在实际问题中,一个力如何分解,应按下述步骤:①根据力F产生的两个效果画出分力 的方向;②根据平行四边形法则用作图法求 的大小,且注意标度的选取;③根据数学知识用计算法求出分力 的大小。三、力的正交分解法: 在处理力的合成和分解的复杂问题时,有一种比较简便宜行的方法——正交分解法。
求多个共点力合成时,如果连续运用平行四边形法则求解,一般说来要求解若干个斜三角形,一次又一次地求部分的合力的大小和方向,计算过程显得十分复杂,如果采用力的正交分解法求合力,计算过程就简单多了。 正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
6.高中物理关于力的100个知识点
1.力的本质 (1)力的物质性:力是物体对物体的作用.提到力必然涉及到两个物体一—施力物体和受力物体,力不能离开物体而独立存在.有力时物体不一定接触. (2)力的相互性:力是成对出现的,作用力和反作用力同时存在.作用力和反作用力总是等大、反向、共线,属同性质的力、分别作用在两个物体上,作用效果不能抵消. (3)力的矢量性:力有大小、方向,对于同一直线上的矢量运算,用正负号表示同一直线上的两个方向,使矢量运算简化为代数运算;这时符号只表示力的方向,不代表力的大小. (4)力作用的独立性:几个力作用在同一物体上,每个力对物体的作用效果均不会因其它力的存在而受到影响,这就是力的独立作用原理. 2.力的作用效果 力对物体作用有两种效果:一是使物体发生形变_,二是改变物体的运动状态.这两种效果可各自独立产生,也可能同时产生.通过力的效果可检验力的存在. 3.力的三要素:大小、方向、作用点 完整表述一个力时,三要素缺一不可.当两个力 F1、F2的大小、方向均相同时,我们说F1=F2,但是当他们作用在不同物体上或作用在同一物体上的不同点时可以产生不同的效果.力的大小可用弹簧秤测量,也可通过定理、定律计算,在国际单位制中,力的单位是牛顿,符号是N. 4.力的图示和力的示意图 (1)力的图示:用一条有向线段表示力的方法叫力的图示,用带有标度的线段长短表示大小,用箭头指向表示方向,作用点用线段的起点表示. (2)力的示意图:不需画出力的标度,只用一带箭头的线段示意出力的大小和方向. 5.力的分类 (1)性质力:由力的性质命名的力.如;重力、弹力、摩擦力、电场力、磁场力、分子力等. (2)效果力:由力的作用效果命名的力.如:拉力、压力、支持力、张力、下滑力、分力:合力、动力、阻力、冲力、向心力、回复力等. 6.重力 (1)重力的产生: 重力是由于地球的吸收而产生的,重力的施力物体是地球. (2)重力的大小: 1由G=mg计算,g为重力加速度,通常在地球表面附近,g取9.8米/秒2,表示质量是1千克的物体受到的重力是9.8牛顿. 2由弹簧秤测量:物体静止时弹簧秤的示数为重力大小. (3)重力的方向:重力的方向总是竖直向下的,即与水平面垂直,不一定指向地心.重力是矢量. (4)重力的作用点——重心 1物体的各部分都受重力作用,效果上,认为各部分受到的重力作用都集中于一点,这个点就是重力的作用点,叫做物体的重心. 2重心跟物体的质量分布、物体的形状有关,重心不一定在物体上.质量分布均匀、形状规则的物体其重心在物体的几何中心上. (5)重力和万有引力 重力是地球对物体万有引力的一个分力,万有引力的另一个分力提供物体随地球自转的向心力,同一物体在地球上不同纬度处的向心力大小不同,但由此引起的重力变化不大,一般情况可近似认为重力等于万有引力,即:mg=GMm/R2.除两极和赤道外,重力的方向并不指向地心.重力的大小及方向与物体的运动状态无关,在加速运动的系统中,例如:发生超重和失重的现象时,重力的大小仍是mg 7.弹力 1.产生条件: (1)物体间直接接触; (2)接触处发生形变(挤压或拉伸). 2.弹力的方向:弹力的方向与物体形变的方向相反,具体情况如下: (1)轻绳只能产生拉力,方向沿绳指向绳收缩的方向. (2)弹簧产生的压力或拉力方向沿弹簧的轴线.(3)轻杆既可产生压力,又可产生拉力,且方向沿杆. 3.弹力的大小 弹力的大小跟形变量的大小有关. 1弹簧的弹力,由胡克定律F=kx,k为劲度系数,由本身的材料、长度、截面积等决定,x为形变量,即弹簧伸缩后的长度L与原长Lo的差:x=|L-L0|,不能将x当作弹簧的长度L2一般物体所受弹力的大小,应根据运动状态,利用平衡条件和牛顿运动定律计算,例2小车的例子就说明这一点. 摩擦力 摩擦力有滑动摩擦力和静摩擦力两种,它们的产生条件和方向判断是相近的. 1.产生的条件: (1)相互接触的物体间存在压力; (2)接触面不光滑; (3)接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力). 注意:不能绝对地说静止物体受到的摩擦力必是静摩擦力,运动的物体受到的摩擦力必是滑动摩擦力.静摩擦力是保持相对静止的两物体之间的摩擦力,受静摩擦力作用的物体不一定静止.滑动摩擦力是具有相对滑动的两个物体之间的摩擦力,受滑动摩擦力作用的两个物体不一定都滑动. 2.摩擦力的方向: 沿接触面的切线方向(即与引起该摩擦力的弹力的方向垂直),与物体相对运动(或相对:运动趋势)的方向相反.例如:静止在斜面上的物体所受静摩擦力的方向沿接触面(斜面)向上. 注意:相对运动是以相互作用的另一物体为参考系的运动,与以地面为参考系的运动不同,故摩擦力是阻碍物体间的相对运动,其方向不一定与物体的运动方向相反. 3.摩擦力的大小: (1)静摩擦大小跟物体所受的外力及物体运动状态有关,只能根据物体所处的状态(平衡或加速)由平衡条件或牛顿定律求解.静摩擦力的变化存在一个最大值—–最大静摩擦力,即物体将要开始相对滑动时摩擦力的大小(最大静摩擦力与正压力成正比). (2)滑动摩擦力与正。
7.高一物理力学力的分解
高中物理力学的一种求解方法。
将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法 ]利用正交分解法求合力步骤: 第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。 第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。
第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步。 在高中物理学习中,正确应用正交分解法能够使一些复杂的问题简单化,并有效的降低解题难度.力的正交分解法在整个动力学中都有着非常重要的作用,那么同学们如何运用力的正交法解题呢 [编辑本段]正交分解法的目的和原则 把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算.在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1,F2,F3…,求合力F时,可把各力沿相互垂直的x轴,y轴分解,则在x轴方向各力的分力分别为 F1x,F2x,F3x…,在y轴方向各力的分力分别为F1y,F2y,F3y….那么在x轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y轴方向的合力Fy= F2y+ F3y+ F3y+….合力,设合力与x轴的夹角为θ,则.在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:F=ma [编辑本段]运用正交分解法典型例题 例1.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成300角的力F作用,F = 50N,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少 解析:对F进行分解时,首先把F按效果分解成竖直向上的分力和水平向右的分力, 对物体进行受力分析如图2所示.F的效果可以由分解的水平方向分力Fx和竖直方向的分力Fy来代替.则: 由于物体处于静止状态时所受合力为零,则在竖直方向有: 则在水平方向上有: 例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力. 解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F1 为使物体下滑的力,F2为物体压紧斜面的力,则: 点评:F1和F2是重力的分力,与重力可以互相替代,但不能共存. 如图5所示,拉力F作用在重为G的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因素为μ,当拉力最小时和地面的夹角θ为多大 解析:选取物体为研究对象,它受到重力G,拉力F,支持力N和滑动摩擦力f的作用,根据平衡条件有: 解得: 设,则,代入上式可得: 当时,,此时F取最小值. 拉力取最小值时,拉力与地面的夹角 点评:这是一个和数学最值知识相结合典型例题,同学们可以通过本题体会和总结用数学知识解决物理问题的方法,逐步建立数学物理模型. 例3:大小均为F的三个力共同作用在O点,如图6所示,F1,F2与F3之间的夹角均为600,求合力. 解析:此题用正交分解法既准确又简便,以O点为原点,F1为x轴建立直角坐标; (1)分别把各个力分解到两个坐标轴上,如图7所示: (2)然后分别求出 x轴和y轴上的合力 (3)求出Fx和Fy的合力既是所求的三个力的合力如图8所示. ,则合力与F1的夹角为600 点评:用正交分解法求共点力的合力的运算通常较为简便,因此同学们要在今后学习中经常应用.。
8.高一物理力学力的分解
高中物理力学的一种求解方法。
将一个力沿着互相垂直的方向(x轴、y轴)进行分解的方法
]利用正交分解法求合力步骤: 第一步,立正交 x、y坐标,这是最重要的一步,x、y坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x与y的方向一定是相互垂直而正交。
第二步,将题目所给定跟要求的各矢量沿x、y方向分解,求出各分量,凡跟x、y轴方向一致的为正;凡与x、y轴反向为负,标以“一”号,凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。
第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。这是此法的核心一步。
第四步,根据各x、y轴的分量,求出该矢量的大小,一定要表明方向,这是最终的一步。
在高中物理学习中,正确应用正交分解法能够使一些复杂的问题简单化,并有效的降低解题难度.力的正交分解法在整个动力学中都有着非常重要的作用,那么同学们如何运用力的正交法解题呢 [编辑本段]正交分解法的目的和原则 把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算.在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1,F2,F3…,求合力F时,可把各力沿相互垂直的x轴,y轴分解,则在x轴方向各力的分力分别为 F1x,F2x,F3x…,在y轴方向各力的分力分别为F1y,F2y,F3y….那么在x轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y轴方向的合力Fy= F2y+ F3y+ F3y+….合力,设合力与x轴的夹角为θ,则.在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;在动力学中,以加速方向和垂直加速度方向为坐标轴建立坐标,这样使牛顿第二定律表达式为:F=ma [编辑本段]运用正交分解法典型例题 例1.物体放在粗糙的水平地面上,物体重50N,受到斜向上方向与水平面成300角的力F作用,F = 50N,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少
解析:对F进行分解时,首先把F按效果分解成竖直向上的分力和水平向右的分力, 对物体进行受力分析如图2所示.F的效果可以由分解的水平方向分力Fx和竖直方向的分力Fy来代替.则:
由于物体处于静止状态时所受合力为零,则在竖直方向有:
则在水平方向上有:
例2.如图3所示,一物体放在倾角为θ的光滑斜面上,求使物体下滑的力和使物体压紧斜面的力.
解析:使物体下滑的力和使物体压紧斜面的力都是由重力引起的,把重力分解成两个互相垂直的两个力,如图4所示,其中F1 为使物体下滑的力,F2为物体压紧斜面的力,则:
点评:F1和F2是重力的分力,与重力可以互相替代,但不能共存.
如图5所示,拉力F作用在重为G的物体上,使它沿水平地面匀速前进,若物体与地面的动摩擦因素为μ,当拉力最小时和地面的夹角θ为多大
解析:选取物体为研究对象,它受到重力G,拉力F,支持力N和滑动摩擦力f的作用,根据平衡条件有:
解得:
设,则,代入上式可得:
当时,,此时F取最小值.
拉力取最小值时,拉力与地面的夹角
点评:这是一个和数学最值知识相结合典型例题,同学们可以通过本题体会和总结用数学知识解决物理问题的方法,逐步建立数学物理模型.
例3:大小均为F的三个力共同作用在O点,如图6所示,F1,F2与F3之间的夹角均为600,求合力.
解析:此题用正交分解法既准确又简便,以O点为原点,F1为x轴建立直角坐标;
(1)分别把各个力分解到两个坐标轴上,如图7所示:
(2)然后分别求出 x轴和y轴上的合力
(3)求出Fx和Fy的合力既是所求的三个力的合力如图8所示.
则合力与F1的夹角为600
点评:用正交分解法求共点力的合力的运算通常较为简便,因此同学们要在今后学习中经常应用.