隐函数的背景知识

bdqnwqk2年前基础16

1.几何知识的背景知识

平面几何:最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。

平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。

笛卡尔引进坐标系后,代数与几何的关系变得明朗, 且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。

立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。

总体上说,上述的几何都是在欧氏空间的几何结构--即平坦的空间结构--背景下考察,而没有真正关注弯曲空间 下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何, 即“非欧几何 ”。非欧几何中包括了最经典几类几何学课题, 比如“球面几何”,“罗氏几何 ”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内, 人们开始考虑射影几何。

这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题--比如平行、相交等等。 这几类几何学所研究的空间背景都是弯曲的空间。

2.秦泊淮的知识背景

唐朝著名诗人杜牧游秦淮,在上听见歌女唱《玉树后庭花》,绮艳轻荡,男女之间互相唱和,歌声哀伤,是亡国之音。

当年陈后主长期沉迷于这种萎靡的生活,视国政为儿戏,终于丢了江山。陈朝虽亡,这种靡靡的音乐却留传下来,还在秦淮歌女中传唱,这使杜牧非常感慨。

他的诗说:这些无知歌女连亡国恨都不懂,还唱这种亡国之音!其实这是借题发挥,他讥讽的实际是晚唐政治:群臣们又沉湎于酒色,快步陈后主的后尘了。秦淮一隅,寄托如此深沉的兴亡感,足见金陵在当时全国政治中心已经移向长安的情况下,影响仍然很大。

3.离骚的背景知识

诗人从自叙身世、品德、理想写起,抒发了自己遭谗被害的苦闷与矛盾,斥责了楚王昏庸、群小猖獗与朝政日非,表现了诗人坚持“美政” 理想,抨击黑暗现实,不与邪恶势力同流合污的斗争精神和至死不渝的爱国热情。

司马迁在《史记·太史公自序》中说:“屈原放逐,乃赋《离骚》。”则当作于被放逐以后。今人对此说法不一,有说作于怀王世被疏以后,有说作于顷襄王世被放以后,有说作于怀王末顷襄王初,有说始作于怀王时而作成于顷襄王初,迄无定论。

司马迁在《史记·屈原 列传》中引刘安《离骚传》说:“屈平疾王听之不聪也, 谗谄之蔽明也,邪曲之害公也,方正之不容也,故忧愁 幽思而作《离骚》,离骚者,尤罹忧也。”;又说:“屈原正道直行,竭忠尽 智以事其君,谗人间之,可谓穷矣。信而见疑,忠而被 谤,能无怨乎?屈平之作《离骚》,盖自怨生也。”屈 原的“忧愁幽思”和怨愤,是和楚国的政治现实紧密联 系在一起的。《离骚》就是他根据楚国的政治现实和自 己的不平遭遇,“发愤以抒情”而创作的一首政治抒情 诗。由于其中曲折尽情地抒写了诗人的身世、思想和境 遇,因此也有人把它看作是屈原生活历程的形象记录,称 它为诗人的自叙传。

4.范畴论的背景知识有哪些

研究范畴就是试图以“公理化”的方法抓住在各种相关连的“数学结构”中的共同特性,并以结构间的“结构保持函数”将这些结构相关起来。因此,对范畴论系统化的研究将允许任何一个此类数学结构的普遍结论由范畴的公理中证出。

考虑下面的例子:由群组成的类Grp包含了所有具有“群结构”的物件。要证明有关群的定理,即可由此套公理进行逻辑的推导。例如,由公理中可立即证明出,群的单位元素是唯一的。

不是只专注在有特定结构的个别物件(如群)上,范畴论会着重在这些物件的态射(结构保持映射)上;经由研究这些态射,可以学到更多关于这些物件的结构。以群为例,其态射为群同态。两个群间的群同态会严格地“保持群的结构”,这是个以将一个群中有关结构的讯息运到另一个群的方法,使这个群可以看做是另一个群的“过程”。因此,对群同态的研究提供了一个得以研究群的普遍特性及群公理的推论的工具。

类似的研究也出现在其他许多的数学理论中,如在拓扑学中对拓扑空间的连续映射的研究(相关范畴称为Top),及对流形的光滑函数的研究等。 再抽象化一次,范畴自身亦为数学结构的一种,因此可以寻找在某一意义下会保持其结构的“过程”;此一过程即称之为函子。函子将一个范畴的每个物件和另一个范畴的物件相关连起来,并将第一个范畴的每个态射和第二个范畴的态射相关连起来。

实际上,即是定义了一个“范畴和函子”的范畴,其元件为范畴,(范畴间的)态射为函子。

经由研究范畴和函子,不只是学习了一类数学结构,及在其之间的态射;还学习了“在不同类型的数学结构之间的关系”。此一基本概念首次出现于代数拓扑之中。不同的“拓扑”问题可以转换至通常较易解答的“代数”问题之上。在拓扑空间上如基本群或基本群胚等基本的架构,可以表示成由群胚所组成的范畴之间的基本函子,而这个概念在代数及其应用之中是很普遍的。 再抽象化一次,架构通常会“自然地相关连”,这个第一眼会觉得很暧昧的概念,产生了自然变换(将一个函子映射至另一函子的方法)此一清楚的概念。许多数学上的重要架构可以从此一角度来研究。

5.最优化原理的背景知识

1951年美国数学家R.Bellman等人,根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。一些静态模型,只要人为地引进“时间”因素,分成时段,就可以转化成多阶段的动态模型,用动态规划方法去处理。与此同时,他提出了解决这类问题的“最优化原理”(Principle of optimality):

“一个过程的最优决策具有这样的性质:即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略”。简言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。

这个“最优化原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。

最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都需要满足一定的条件:

(1) 问题中的状态必须满足最优化原理;

(2) 问题中的状态必须满足无后效性。

所谓的无后效性是指:“下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结”。

动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。

图1 动态规划决策过程示意图

(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。

(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。

(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

隐函数的背景知识

标签: 函数背景