七年级下册数学第五章知识点

bdqnwqk2年前问题22

1.七年级下册数学第五章的知识点以知识树的形式整理出来

七年级数学(下)期末复习知识点整理5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 图形 顶点 边的关系 大小关系对顶角 ∠1与∠2 有公共顶点 ∠1的两边与∠2的两边互为反向延长线 对顶角相等即∠1=∠2邻补角 ∠3与∠4 有公共顶点 ∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。符号语言记作: 如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简称:垂线段最短。3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。

注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。

4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆。5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别 ⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。

联系:具有垂直于已知直线的共同特征。(垂直的性质) ⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。

联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。 ⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。

5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线 与直线 互相平行,记作 ‖ 。2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。

⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。②如果两条直线都平行于第三条直线,那么这两条直线平行。

典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线。 ⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。

⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。“在同一平面内”是一项重要条件,不能遗漏。

⑵正确 ⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。因为如果这一点不在已知直线上,是作不出这条直线的平行线的。

1、平行线的性质: 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补。两条平行线的距离 直线AB‖CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。

注意:直线AB‖CD,在直线AB上任取一点G,过点G作CD的。

2.七年级下册数学5至10单元概念(人教版)

1.1 数字与字母的乘积,这样的代数式叫做单项式。

几个单项似的和叫做多项式。 一个单项式中,所有字母的指数和叫做这个单向式的次数。

一个多项式中,次数最高的项的次数,叫做这个多项式的次数。 1.3 同敌数幂相乘,底数不变,指数相加。

1.4幂的乘方,底数不变,指数相乘。 积的乘方等于每个因数成方的积。

1.4同底数幂相除,底数不变,指数相减。 任何非0数的0次方,等于1 1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。

单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

1.7 两数和与这两数差的积,等于他们的平方差 1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。 多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。

2.1 补角互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A补角的性质:同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A余角的性质:同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

对顶角相等2.2同位角 定义如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角 内错角的定义两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。

同旁内角定义同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。

【平行线的特征】1.两条直线平行,同旁内角互补。2.两条直线平行,内错角相等。

3.两条直线平行,同位角相等。【平行线的判定】1.同旁内角互补,两直线平行。

2.内错角相等,两直线平行。3.同位角相等,两直线平行。

4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。3.2有效数字一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。

4.1☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。 必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0。

3.归纳七年级下册数学每章的知识点,并用每个知识点来编一道题,答案

七年级下册数学知识点归纳 第五章 平等线与相交线 1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等 3、判断两直线平行的条件: 1)同位角相等,两直线平行。(2)内错角相等,两直线平行。

3)同旁内角互补,两直线平行。(4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。

4、平行线的特征: (1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。 5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成 每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如 果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移 平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

第六章 平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。3、在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。

坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

3、特殊位置的点的坐标的特点: (1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 (2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。4.点到轴及原点的距离 点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号; 在平面直角坐标系中对称点的特点: 1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。 3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-) x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-) x轴上的点纵坐标为0,y轴横坐标为0。第七章 三角形 1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。 3、直角三角形的两个锐角互余 4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。

5、直角三角形全等的条件: 斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 (只要有任意两条边相等,这两个直角三角形就全等)。

6、三角形全等的条件: (1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 (2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 (4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

7、等腰三角形的特征: (1) 有两条边相等的三角形叫做等腰三角形; (2) 等腰三角形是轴对称图形; (3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。 (4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。 8、三角形具有稳定性,四边形不具有稳定性。

9.三角形内角和为180°,三角形的一个外交等于与他不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角。多边形1.有一些线段首位顺次相接组成的图形叫做多边形2、多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

3、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。4、画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。

5.各个角都相等,各条边都相等的多边形叫做正多边形。6、n边形的内角和等于(n-2)*180° 多边形。

4.初一下所有数学知识点

知识梳理: ⑴正数与负数:负数产生的必要性;具有相反意义的量。

⑵有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。 ⑶相反数、倒数、绝对值: 只有符号不同的两个数是互为相反数,a的相反数为-a; 一个数除以1所得的商是这个数的倒数,零没有倒数; 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

⑷数轴:原点、正方向、单位长度是数轴的三要素。 ⑸有理数的大小比较: 方法一:零大于一切正数,而小于一切负数; 两个负数,绝对值大的反而小。

方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。 实 数 一、知识梳理: 1、实数的分类.有理数(正有理数、0、负有理数),无理数(无限不循环小数) 2、实数的有关概念: (1)平方根:一般地,如果一个数的平方等于 ,那么这个数叫做 的平方根.正数有两个平方根,负数没有平方根,0的平方根是0 (2)算术平方根:正数的正平方根和零的平方根,统称算术平方根. (3)立方根:一个数的立方等于a,这个数叫做a的立方根。

3、实数与数轴上的点一一对应。会在数轴上表示有些无理数 知识要点】 1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程 2.解一元一次方程的一般步骤是: (1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1” 3.一元一次方程ax=b的解的情况: (1)当a≠0时,ax=b有唯一的解 (2)当a=0,b≠0时,ax=b无解 (3)当a=0,b=0时,ax=b有无穷多个解【 知识要点: 1.因式分解定义:把一个多项式化成几个_______式乘积的形式.因式分解与整式的乘法是互为________. 2.因式分解的基本方法: (1)提取公因式法(首先考虑的方法)、应用公式法、分组分解法、十字相乘法. (2)公式:a2-b2=__ _____,a2±2ab+b2=___ ____, a3+b3=____ ____,a3-b3=___ ____. 3.因式分解的一般步骤 先看有没有公因式,若有立即提出;然后看看是几项式,若是二项式则用平方差、立方或立方差公式;若是三项式用完全平方公式或十字相乘法;若是四项及以上的式子用分组分解法,要注意分解到不能再分解为止. 一,知识梳理: 1、有理数的加法、减法、乘法、除法、乘方运算法则、混合运算 2、运算律:交换律、结合律、分配律,去括号法则 (1)有理数的加法法则: 1. 同号两数相加,和取相同的符号,并把绝对值相加; 2. 绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; 3. 一个数与零相加仍得这个数; 4. 两个互为相反数相加和为零。

⑵有理数的减法法则: 减去一个数等于加上这个数的相反数。 补充:去括号与添括号: 去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。

添括号法则:在“+”号后边添括号,括到括号内的各项都不变;在“-”号后边添括号,括到括号内的各项都要变号。 ⑶有理数的乘法法则: ① 两数相乘,同号得正,异号得负,并把绝对值相乘; ② 任何数与零相乘都得零; ③ 几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正; ④ 几个有理数相乘,若其中有一个为零,积就为零。

⑷有理数的除法法则: 法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除; 法则二:除以一个数等于乘以这个数的倒数。 ⑸有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的给果叫做幂。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。 ⑹有理数的运算顺序: 先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。

⑺运算律: ①加法的交换律; ②加法的结合律; ③乘法的交换律; ④乘法的结合律; ⑤乘法对加法的分配律; 注:除法没有分配律。 3、科学记数法:把一个数表示成a(1≤a<10)与10的幂相乘的形式。

如:304000=3 4、准确数与近似数:与实际完全符合的数叫准确数,与实际接近的数叫近似数。取近似数有两种方法(1)精确到哪位,如:把84960精确到万位得(2)有效数字:从左边第一个不是零的数字起到到末位数字为止的所有数字都叫做这个数的有效数字。

如:把84960保留两个有效数字得: 5、计算器的使用 1、平移变换 ①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 ②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等 2、平移的特征: ①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。

②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。 知识点整理:1、相交线 两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表: 图形 顶点 边的关系 大小关系 对顶角 ∠1与∠2 有。

5.初一下册数学五六章知识点

第五章:

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用

不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“&lt;”、“&gt;”)表示的不等关系的式子叫做不等式

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成

(8).利用数轴确定一元一次不等式组的解集

第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.

本章的重点是:二元一次方程组的解法——代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;

2.正确地找出应用题中的相等关系,列出一次方程组

6.七年级下册数学知识点总结

第一章 整式的运算 一. 整式 ※1. 单项式 ①由数与字母的积组成的代数式叫做单项式。

单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式 ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减 ¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法 ※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数) 四.幂的乘方与积的乘方 ※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3 ※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法 ※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法 ※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式 ¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八.完全平方公式 ¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)。

7.七年级下册数学知识点归纳

第五章 平等线与相交线 1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等 3、判断两直线平行的条件: 1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。

3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。

4、平行线的特征: (1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。 5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成 每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如 果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移 平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

第六章 平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。3、在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。

坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

3、特殊位置的点的坐标的特点: (1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 (2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。4.点到轴及原点的距离 点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号; 在平面直角坐标系中对称点的特点: 1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。 3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-) x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-) x轴上的点纵坐标为0,y轴横坐标为0。第七章 三角形 1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。 3、直角三角形的两个锐角互余 4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。

5、直角三角形全等的条件: 斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 (只要有任意两条边相等,这两个直角三角形就全等)。

6、三角形全等的条件: (1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 (2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 (4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

27、等腰三角形的特征: (1) 有两条边相等的三角形叫做等腰三角形; (2) 等腰三角形是轴对称图形; (3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。 (4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。

8.七年级下册数学知识点归纳

第五章 平等线与相交线 1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等 3、判断两直线平行的条件: 1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。

3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。

4、平行线的特征: (1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。 5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

第六章 平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。3、在平面内画两条互相垂直,并且有公共原点的数轴。

这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。

坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。

象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

3、特殊位置的点的坐标的特点: (1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 (2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。4.点到轴及原点的距离 点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号; 在平面直角坐标系中对称点的特点: 1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。 3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律:第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-) x轴上的点纵坐标为0,y轴横坐标为0。第七章 三角形 1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。 3、直角三角形的两个锐角互余 4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。

5、直角三角形全等的条件: 斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 (只要有任意两条边相等,这两个直角三角形就全等)。

6、三角形全等的条件: (1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 (2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 (4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

27、等腰三角形的特征: (1) 有两条边相等的三角形叫做等腰三角形; (2) 等腰三角形是轴对称图形; (3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。 (4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。

七年级下册数学第五章知识点