数学几何知识

bdqnwqk2年前基础18

1.几何知识点总结归纳

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于。

2.图形与几何知识点整理

A、图形的认识1、点,线,面 点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。2、角 线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

③将线段的两端无限延长就形成了直线。直线没有端点。

④经过两点有且只有一条直线。比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 正方形:一组邻边相等的矩形是正方形 性质:正方形具有平行四边形、菱形、矩形的一切性质 判定:1、对角线相等的菱形2、邻边相等的矩形3、相交线与平行线 角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。

③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

4、三角形 三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。

④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。

⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。

⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

⑩三角形的三条高所在的直线交于一点。图形的全等:全等图形的形状和大小都相同。

两个能够重合的图形叫全等图形。全等三角形:①全等三角形的对应边/角相等。

②条件:SSS、AAS、ASA、SAS、HL。勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

5、四边形 平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。菱形:①一组邻边相等的平行四边形是菱形。

②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的。

3.初中数学的几何有哪些内容

几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。

2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。

4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。

4.初中数学几何知识点

几何知识点汇总:

第一部分:相交线与平行线

1、线段、直线的基本性质:2、角的分类:

3、平面内两条直线的关系:

4、平行线的性质与判定:

第二部分:三角形

1、重要线段:中线、角平分线、高线、中位线:

2、三角形边、角的性质:

3、三角形按边、按角分类:

4、三角形中位线性质及应用:

5、等腰三角形的性质:

6、等腰三角形的判定:

7、直角三角形的性质:

8、直角三角形的判定:

第三部分:全等与相似

1、全等三角形的性质、判定:

2、直角三角形的判定:

3、相似三角形的性质、判定:

4、相似多边形的性质与判定:

第四部分:四边形

1、多边形的内角和与外角和:

2、平行四边形的定义、性质、判定:

3、平行四边形的典型图形与结论:

5、矩形的定义、性质、判定:

6、矩形的典型图形与结论:

7、菱形的定义、性质、判定:

8、菱形的的典型图形与结论:

9、正方形的的定义、性质、判定:

10、正方形的典型图形与结论:

11、等腰梯形的定义、性质、判定:

12、等腰梯形的的典型图形与结论:

13、顺次连接各边中点所成四边形的形状与原四边形的关系:

14、常见四边形的对称特点:

第五部分: 圆

1、点与圆的位置关系:

2、垂径定理:

3、圆心角的定义、性质定理:

4、圆周角的定义、性质定理:

5、确定圆的条件:

6、圆的对称性:

7、直线和圆的位置关系:

8、切线的性质、判定:

9、切线长定理:

10、三角形的内心、外心的定义和确定方法:

11、圆与圆的位置关系:

12、正多边形和圆:

13、弧长公式、扇形面积公式:

15、扇形与它围成的圆锥的关系:

第六部分:视图与投影

1、几何体的截面的形状:

2、小正方体的展开图:

3、常见集几何体的三视图:

4、中心投影、平行投影、正投影:

第七部分:平移与旋转

1、图形平移的性质:

2、图形旋转的性质:

第八部分:解直角三角形

1、三种锐角函数的定义式:

2、三角函数的特殊值:

3、解直角三角形所需要的关系式及定理:

4、常见解直角三角形的应用:

5、测量物体高度的两种主要方法:

第九部分:

(一)几何模型

(二)解决问题的策略

1、利用特殊情形探索规律:

2、分情况讨论:

3、将未知转化为已知:

4、数与形相结合:

5、几何与代数的综合应用:

5.七下数学几何知识点总结在哪

七下数学知识点总结

热冰

时间在学习中流逝着,不觉间又一学期走了一半,七下数学的几何部分也告一段落,故将一些重要的和易错的知识点总结于此,供日后学习完善!此内容仅限于人教版内容顺序

平行线与相交线部分

1过两点有且只有一条直线(强调唯一性和存在性)

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

尺规作图(这是重难点)

作线段等于已知线段和作角等于已知角

(1)理解尺规作图的含义

①只用没有刻度的直尺和圆规作图称为尺规作图.

显然,尺规作图的工具只能是直尺和圆规.其中直尺用来作直线、线段、射线或延长线段等;圆规用来作圆或圆弧等.值得注意的是直尺是没有刻度的或不考虑刻度的存在.

②基本作图:a. 用尺规作一条线段等于已知线段;b. 用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.

(2)熟练掌握尺规作图题的规范语言

Ⅰ. 用直尺作图的几何语言:

①过点*、点*作直线**;或作直线**;或作射线**;

②连结两点**;或连结**;

③延长**到点*;或延长(反向延长)**到点*,使**=**;或延长**交**于点*;

Ⅱ. 用圆规作图的几何语言:

①在**上截取**=**;

②以点*为圆心,**的长为半径作圆(或弧);

③以点*为圆心,**的长为半径作弧,交**于点*;

④分别以点*、点*为圆心,以**、**的长为半径作弧,两弧相交于点*、*.

(3)尺规作图题的步骤:

①已知:当题目是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;

②求作:能根据题目写出要求作出的图形及此图形应满足的条件;

③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹. 对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.

在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°(掌握证明此定理的两种方法)

附加:画三角形的高时,只需向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边上的高. (易错点)

注意:(1)三角形的高是线段,垂线段.

(2)锐角三角形的高都在三角形内部;直角三角形仅斜边上的高在三角形内部,另两边上的高为三角形的两条直角边;钝角三角形仅一条高在三角形内部,另两条高在三角形外部.

(3)三角形三条高所在直线交于一点.且这点叫做三角形的垂心。

三角形的三条中线交于三角形内部, 这一点叫做三角形的重心。

三角形三条角平分线交于三角形内部,这一点叫做三角形的内心。

四边形内容部分

18定理 四边形的内角和等于360°

19四边形的外角和等于360°

20多边形内角和定理 n边形的内角的和等于(n-2)*180°

21推论 任意多边的外角和等于360°

22多边形对角线公式n (n-3)/2

6.求关于初一数学几何图形的知识点

一、知识点回顾1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形.平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形.2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.3、生活中的立体图形圆柱(圆柱的侧面是曲面,底面是圆)柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(棱柱的侧面是若干个小长方形构成,底面是多边形)(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱.侧棱:相邻两个侧面的交线叫做侧棱.n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点.5、正方体的平面展开图:11种截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、五边形、六边形、正六边形不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形8 三视图物体的三视图指主视图、俯视图、左视图.主视图:从正面看到的图,叫做主视图.左视图:从左面看到的图,叫做左视图.俯视图:从上面看到的图,叫做俯视图.注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一.9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形.1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形.2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2弧:圆上A、B两点之间的部分叫做弧.扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.。

7.初二数学几何知识点归纳

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

(2)

.

练习:

1.课本124页3题.

2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业: 课本130页 2、3、4题.

8.求高中解析几何知识点 总结

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。

(1)判定直线在平面内的依据

(2)判定点在平面内的方法

公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。

(1)判定两个平面相交的依据

(2)判定若干个点在两个相交平面的交线上

公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据

(2)判定若干个点共面的依据

推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据

(2)判断若干个平面重合的依据

(3)判断几何图形是平面图形的依据

推论2:经过两条相交直线,有且仅有一个平面。

推论3:经过两条平行线,有且仅有一个平面。

立体几何 直线与平面

空 间 二 直 线 平行直线

公理4:平行于同一直线的两条直线互相平行

等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。

异面直线

空 间 直 线 和 平 面 位 置 关 系

(1)直线在平面内——有无数个公共点

(2)直线和平面相交——有且只有一个公共点

(3)直线和平面平行——没有公共点

立体几何 直线与平面

直线与平面所成的角

(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角

(2)一条直线垂直于平面,定义这直线与平面所成的角是直角

(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角

三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直

三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

空间两个平面 两个平面平行 判定

性质

(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行

(2)垂直于同一直线的两个平面平行

(1)两个平面平行,其中一个平面内的直线必平行于另一个平面

(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行

(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面

相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面

二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角

平面角是直角的二面角叫做直二面角

两平面垂直 判定

性质

如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面

(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内

立体几何 多面体、棱柱、棱锥

多面体

定义 由若干个多边形所围成的几何体叫做多面体。

棱柱 斜棱柱:侧棱不垂直于底面的棱柱。

直棱柱:侧棱与底面垂直的棱柱。

正棱柱:底面是正多边形的直棱柱。

棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。

到一定点距离等于定长或小于定长的点的集合。

欧拉定理

简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2

数学几何知识

标签: 几何数学