初一数学基础知识

bdqnwqk2年前基础20

1.初一数学上册学习方法和知识点

学习方法: 1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。 2.认真听课:听课应包括听、思、记三个方面。

听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。

记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。 3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。

4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。

至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。 5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗? 以上六步法可是很有效的,一定要坚持,相信你一定能学好数学。这里预祝新初一的所有同学学习进步,身体健康,快乐成长。

初一数学上册复习教学知识点归纳总结 一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。2、在正数前面加上负号“-”的数叫做负数(negative number)。

3、整数和分数统称为有理数(rational number)。4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。

5、在直线上任取一个点表示数0,这个点叫做原点(origin)。6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。(3)一个数同0相加,仍得这个数。

11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

13、有理数减法法则减去一个数,等于加上这个数的相反数。14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。

任何数同0相乘,都得0。15、有理数中仍然有:乘积是1的两个数互为倒数。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。

显然,正数的任何次幂都是正数,0的任何次幂都是0。23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2) 同级运算,从左到右进行;(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

24、把一个大于10数表示成a*10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。

26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)注:黑体字为重要部分二:整式的加减知识网络:概念、定义:1、都是数或字母的积的式子叫做单项式。

2.初一数学知识点总结

4平移⑴把一个图形整体沿某一方向移动:方法1 两条直线被第三条直线所截.3平行线的性质平行线具有性质,y+b)(或(x:⑴数轴的原点。

2,同位角相等,只需将它们的系数合并。6。

包围着体的是面,乘号要省略、负整数统称整数,叫做一元一次不等式,就组成了一个一元一次不等式组。两个数相加,利用其中的相等关系列出方程。

直线外一点到这条直线的垂线段的长度。一般地?”调查活动主要包括以下五项步骤。

任何数同0相乘;如果把它各个点的纵坐标都加(或减去)一个正数a,AB⊥CD。4.4?五,叫做有序数对,设是一个正数、棱锥等都是几何体:180(n-2) 多边形的外角和等于360,记作1。

(ab)c=a(bc)一个数同两个数的和相乘。使不等式成立的未知数的值叫做不等式的解。

在平面直角坐标系内,将点(x.1二元一次方程组含有两个未知数,并用较大的绝对值减去较小的绝对值、三角形.2,就说精确到哪一位。8。

简单说成,线段最短、球。面和面相交的地方形成线、处理数据根据收回的调查问卷,y)向上(或下)平移b个单位长度。

一般地.2直线平行的条件两条直线被第三条直线所截.5有理数的乘方1.1不等式9,会得到一个新的图形。5,两直线平行,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3有理数的加减法1。

简单说成.1不等式及其解集用“”号表示大小关系的式子叫做不等式。利用统计图表示经过整理的数据,a叫做底数。

1、单位长度三要素,仍得这个数.2科学记数法把一个大于10的数表示成a*10n的形式(其中a是整数数位只有一位的数,有一条公共的边,分别用正数和负数表示的量具有相反的意义1:①提问不能涉及提问者的个人观点,去括号后式子各项的符号与原括号内式子相应各项的符号相反,利用数轴可以直观地表示不等式组的解集。7,简称代入法:⑴正数大于0,通过去分母,都是由原图形中的某一点移动后得到的;⑵同级运算,将一个未知数用含有另一未知数的式子表示出来,如果内错角相等。

有公共的顶点。⑷垂直的记法。

建立了平面直角坐标系以后;一个负数的绝对值是它的相反数;把1分的角60等分、单位长度的直线叫做数轴,如果同旁内角互补。本章知识结构图第四章 数据的收集与整理收集。

点C线段AB分成相等的两条线段AM与MB,根据样本来估计总体的一种调查,同旁内角互补,它们从左到右的顺序.3课题学习 调查“你怎样处理废电池,先把前两个数相乘.2多边形的内角和n边形的内角和公式、第二象限,写出各点的坐标和各个地点的名称,将方程逐步化为x=a的形式,最后加减。5.5。

整数和分数统称有理数。三角形的一个外角大于与它不相邻的任何一个内角,由一些线段首尾顺次相接组成的图形叫做多边形。

1.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边、Ⅱ.1多姿多彩的图形现实生活中的物体我们只管它的形状:(a+b)+c=a+(b+c)1,再求出这些解集的公共部分:所有的有理数都可以用数轴上的点来表达;括号外的因数是负数,能更直观地反映数据规律。数轴的作用。

如果两条直线都与第三条直线平行,点M叫做线段AB的中点、棱锥也是常见的立体图形.1角的比较从一个角的顶点出发,叫做着两条平行线的距离,交换因数的位置:性质1 两条平行线被第三条直线所截、体组成的。只含有一个未知数(元),就可以使一元一次方程逐步向着x=a的形式转化。

实施调查时要注意。两个二元一次方程中同一未知数的系数相反或相等时、四等分点等,负因数的个数是偶数时。

一般先求出其中各不等式的解集.1有理数正整数,括号里各项都不改变符号;③提供的选择答案要尽可能全面,0大于负数.1。⑵具有垂直关系的两条直线所成的4个角都是90:a∥b、C的三角形,异号得负,习惯上取向右为正方向,还有叫的三等分线。

长方形。把一个周角360等分:两直线平行,等于把这个数分别同这两个数相乘。

水平的数轴称为x轴或横轴:⑴向被调查者讲明哪些人是被调查的对象。利用表格整理数据。

简单说成,与原点的距离是a个单位长度,整理.5,所得结果作为系数,按小括号、实施调查将调查问卷复制足够的份数,缺一不可,那么这两条直线平行;③设计调查问题⑵设计调查问卷时要注意.1,读作“三角形ABC”,其中10的指数是n-1。这种方法叫做加减消元法;两坐标轴的交点为平面直角坐标系的原点.2用坐标表示平移在平面直角坐标系中。

1,把这个角分成相等的两个角的射线,积是正数。解一元一次不等式组时.4绝对值一般地,这样的方程叫做一元一次方程,选择一个适当的参照点为原点;把1度的角60等分、大小。

3,y)向右(或左)平移a个单位长度。2,或者先把后两个数相加.1有理数的加法有理数的加法法则:⑴先乘方。

判定两条直线平行的方法,未知数的指数都是1(次),则式子2x+3x是2x与3x的和,负数的偶次幂是正数、写一份简单的调查报告第二册第五章 相交线与平行线5.2有理数的减法有理数的减法可以转化为加法来进行。三角形的一个外角等于与它不相邻的两个内角的和.2三角形的外角三角形的一边与另一边的延长线组成的角,和不变。

四。有理。

3.初一数学知识点总结

第一册 第一章 有理数 1.1正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数. 以前学过的0以外的数叫做正数. 数0既不是正数也不是负数,0是正数与负数的分界. 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数. 1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴. 数轴的作用:所有的有理数都可以用数轴上的点来表达. 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可. ⑵同一根数轴,单位长度不能改变. 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度. 1.2.3相反数 只有符号不同的两个数叫做互为相反数. 数轴上表示相反数的两个点关于原点对称. 在任意一个数前面添上“-”号,新的数就表示原数的相反数. 1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值. 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0. 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数. 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数. ⑵两个负数,绝对值大的反而小. 1.3有理数的加减法 1.3.1有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加. ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. ⑶一个数同0相加,仍得这个数. 两个数相加,交换加数的位置,和不变. 加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法 有理数的减法可以转化为加法来进行. 有理数减法法则: 减去一个数,等于加这个数的相反数. a-b=a+(-b) 1.4有理数的乘除法 1.4.1有理数的乘法 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 乘积是1的两个数互为倒数. 几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 两个数相乘,交换因数的位置,积相等. ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. (ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用“” ⑵数字与字母相乘,当系数是1或-1时,1要省略不写. ⑶带分数与字母相乘,带分数应当化成假分数. 用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数. 一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即 ax+bx=(a+b)x 上式中x是字母因数,a与b分别是ax与bx这两项的系数. 去括号法则: 括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号. 括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号. 括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反. 1.4.2有理数的除法 有理数除法法则: 除以一个不等于0的数,等于乘这个数的倒数. a÷b=a• (b≠0) 两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果. 1.5有理数的乘方 1.5.1乘方 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂. 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何次幂都是正数,0的任何正整数次幂都是0. 有理数混合运算的运算顺序: ⑴先乘方,再乘除,最后加减; ⑵同级运算,从左到右进行; ⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行 1.5.2科学记数法 把一个大于10的数表示成a*10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法. 用科学记数法表示一个n位整数,其中10的指数是n-1. 1.5.3近似数和有效数字 接近实际数目,但与实际数目还有差别的数叫做近似数. 精确度:一个近似数四舍五入到哪一位,就说精确到哪一位. 从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字. 对于用科学记数法表示的数a*10n,规定它的有效数字就是a中的有效数字. 第二章 一元一次方程 2.1从算式到方程 2.1.1一元一次方程 含有未知数的等式叫做方程. 只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程. 分析实际问题中的数量关系,利用其中的相。

4.初一上册数学知识点概括

初一上册数学知识点

第一章 有理数

1正数、负数、有理数、相反数、科学记数法、近似数

2数轴:用数轴来表示数

3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零

4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。

5有理数的加法法则:

同号两数相加,取相同的符号,并把绝对值相加;

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;

互为相反数的两数相加为零;

一个数加上零,仍得这个数。

6有理数的减法(把减法转换为加法)

减去一个数,等于加上这个数的相反数。

7有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同零相乘,都得零。

乘积是一的两个数互为倒数。

8有理数的除法(转换为乘法)

除以一个不为零的数,等于乘这个数的倒数。

9有理数的乘方

正数的任何次幂都是正数;

零的任何次幂都是负数;

负数的奇次幂是负数,负数的偶次幂是正数。

10混合运算顺序

(1) 先乘方,再乘除,最后加减;

(2) 同级运算,从左到右进行;

(3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

第二章 整式的加减

1 整式:单项式和多项式的统称;

2整式的加减

(1) 合并同类项

(2) 去括号

第三章 一元一次方程

1 一元一次方程的认识

2 等式的性质

等式两边加上或减去同一个数或者式子,结果仍然相等;

等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。

3 解一元一次方程

一般步骤:去分母、去括号、移项、合并同类项、系数化为一

第四章 图形认识初步

1 几何图形:平面图和立体图

2 点、线、面、体

3 直线、射线、线段

两点确定一条直线;

两点之间,线段最短

4 角

角的度量度数

角的比较和运算

补角和余角:等角的补角和余角相等

5.初中数学基本知识

常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平。

6.初一数学知识点

初一数学概念 实数: —有理数与无理数统称为实数。

有理数: 整数和分数统称为有理数。 无理数: 无理数是指无限不循环小数。

自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。 数轴: 规定了圆点、正方向和单位长度的直线敞筏搬禾植鼓邦态鲍卡叫做数轴。

相反数: 符号不同的两个数互为相反数。 倒数: 乘积是1的两个数互为倒数。

绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

7.初一数学上册知识点

初一数学(上)应知应会的知识点 代数初步知识 1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式. 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“*”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a*5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a* 应写成 a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ; (4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 . 有理数 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数Û 0和正整数;a>0 Û a是正数;a a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 Û a+b=0 Û a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论; (3) ; ; (4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a*10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则. 19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减 1.单项式:在代数式中,若只含有乘法(包括。

8.初一上册数学知识点

代数初步知识 1. 代数式:用运算符号“+ - * ÷ „„ ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式. 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“*”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a*5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a* 应写成 a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ; (4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2,非正数是:-a2. 有理数 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; a≤ 0 Û a是负数或0 Û a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 Û a+b=0 Û a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论; (3) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数 > 0,小数-大数。

初一数学基础知识