知识图谱怎么理解和学习

bdqnwqk2年前基础20

图谱的作用很大,可以帮助你整理大脑中杂乱的知识,形成知识网络

知识图谱和数据库有什么区别

知识图谱是新一代的语义网实现,是具备推理能力的知识库应用,在构建中表现为一个技术栈的组合。知识图谱的目标是解决信息过载问题。
知识图谱是运用一套新的技术和方法论在知识结构化和分析洞察两个方面提升信息转化为知识并且被利用的效率。
大数据库和知识图谱的抽象工作都是关于“结构化”和“关联”,不过前者是数据结构化,后者是知识结构化,前者是数据级别的关联,而后者是知识级别的关联。
在应用落地的功能场景上,知识图谱和大数据库在解决类似的分析洞察问题,只是知识图谱在处理“关系”这件事儿上,更直观、更高效。
撇开对知识本身的组织、查询和展现不谈,在分析和洞察方面知识图谱技术可以视为是一种新的分析手段,基于图数据库和图分析的知识图谱在风险防控和营销推荐的某些方面有比较好的表现,尤其在设计多层次、多关系事务的探查效率和模型扩展能力上,知识图谱被认为是突破传统数据分析技术瓶颈的希望所在。

知识图谱怎样入门

知识图谱作为一门学问,绝不是用个图数据库写几条查询,或者用规则写一个表格的提取,就可以称为成功的运用的。和所有的学科一样,都需要长期的艰苦的努力,在充分了解前人成果的基础上,才有可能做出一点点成绩。
知识图谱作为人工智能(AI)的一个分支,和AI的其他分支一样,它的成功运用,都是需要知道它的所长,更需要知道它的所短的。特别是AI各个学派林立,经验主义(机器学习)、连接主义(神经网络)、理性主义(知识工程)、行为主义(机器人)各个方法的优劣,倘若不能有纵览的理解,也难以做正确的技术选型,往往盲目相信或者排斥一种技术。AI是一个极端需要广阔视野的学科。
知识图谱涉及知识提取、表达、存储、检索一系列技术,即使想有小成,也需要几年的功夫探索。如下所列,应该是每个知识图谱从业者都应该了解的一些基本功:
知道Web的发展史,了解为什么互联和开放是知识结构形成最关键的一件事。(我把这个列第一条,是我的偏见——但我认为这是最重要的一个insights)
知道RDF,OWL,SPARQL这些W3C技术堆栈,知道它们的长处和局限。会使用RDF数据库和推理机。
了解一点描述逻辑基础,知道描述逻辑和一阶逻辑的关系。知道模型论,不然完全没法理解RDF和OWL。
了解图灵机和基本的算法复杂性。知道什么是决策问题、可判定性、完备性和一致性、P、NP、NExpTime。
最好再知道一点逻辑程序(Logic Programming),涉猎一点答集程序(Answer Set Programming),知道LP和ASP的一些小工具。这些东西是规则引擎的核心。如果不满足于正则表达式和if-then-else,最好学一点这些。