小学三角形知识点总结

bdqnwqk2年前学者19

1.求关于小学三角形的全部知识

等腰三角形的两个底角相等。

(简写成“等边对等角”) 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“等腰三角形的三线合一”) 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明) 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴(等腰三角形的性质)。

2.三角形的全部知识

三角形 按角分:锐角三角形 直角三角形 钝角三角形按边分:不等边三角形 等腰三角形 等边三角形相似三角形:各对应角相等 对应边成比例的三角形 判断相似三角形:1、各对应角相等 2、对应边成比例 3、有两条对应边成比例且这两条边的夹角相等 4、平行于一个三角形的直线与这个三角形的另两条边所构成的三角形与此三角形相似全等三角形:相似比为1的相似三角形 是相似三角形的特殊情况 全等三角形的判定:1、三条对应边相等 2、有两个角相等且有任意一条边相等 3、任意两边相等的直角三角形全等勾股定理:直角三角形的两直角边的平方和等于斜边的平方三角形三条边的关系:任意两条边的和一定大于第三条边 任意两条边的差一定小于第三条边三角形的三个内角的和等于180°等腰三角形顶角所对的边的高与中线与顶角的角平分线在同一条直线上等腰三角形的两底角相等 两腰相等等边三角形三边相等 三角相等且都等于60° 等边三角形的高等于其边长的3^0.5/2倍三角形的面积等于 底乘以高除以二三角函数:正弦(sin) 余弦(cos) 正切(tan) 余切(cot)sinA=角A对的边除以斜边 cosA=角A的邻边除以斜边 tanA=角A的对边除以角A的邻边 cotA=角A的邻边除以角A的对边(sinA)^2+(cosA)^2=1 sinA=tanA*cosA tanA=1/cotA这是百度文库里的有关三角形的全部知识,可以免费下载,你可以参考看看。

3.关于四年级下册三角形的知识.

1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形. 2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底.三角形只有3条高.重点:三角形高的画法. 3、三角形的特性:1、物理特性:稳定性.如:自行车的三角架,电线杆上的三角架. 4、边的特性:任意两边之和大于第三边. 5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC. 6、三角形的分类: 按照角大小来分:锐角三角形,直角三角形,钝角三角形. 按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△). 等边△的三边相等,每个角是60度.(顶角、底角、腰、底的概念) 7、三个角都是锐角的三角形叫做锐角三角形. 8、有一个角是直角的三角形叫做直角三角形. 9、有一个角是钝角的三角形叫做钝角三角形. 10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角. 11、两条边相等的三角形叫做等腰三角形. 12、三条边都相等的三角形叫等边三角形,也叫正三角形. 13、等边三角形是特殊的等腰三角形 14、三角形的内角和等于180度.四边形的内角和是360°有关度数的计算以及格式. 15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形. 16、用2个相同的三角形可以拼成一个平行四边形. 17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形. 18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形.一个大的等腰的直角的三角形. 19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等.。

4.三角形的所有知识点,包括作图

三角形的五心:1、垂心:三角形三条边上的高交于一点,这点就是三角形垂心。

画法:以三角形ABC为例。先画AB边上的高,分别以A和B为圆心,分别以CA和CB为半径画弧,交于M和N两点,过M和N两点的直线就是AB边上的高线;用同样的方法画出BC边上的高线,这两条高线的交点就是三角形的垂心。

2、重心:三角形三条边上的中线交于一点,这点就是三角形的重心。画法:以三角形ABC为例。

先找AB边的中点,分别以A和B为圆心,分别以大于AB的一半长为半径画弧,交于两点,这两点的连线与AB的交点就是线段AB的中点,这个中点和C点的连线就是AB边上的中线;用同样的方法画出BC边上的中线,这两条中线的交点就是三角形的重心。重心的性质:三角形的重心到顶点的距离等于到对边的距离的2倍。

3、外心:三角形外接圆的圆心就是三角形的外心。画法:以三角形ABC为例。

先画AB边上的垂直平分线,分别以大于AB的一半长为半径画弧,交于两点,过这两点的直线就是线段AB的垂直平分线;用同样的方法画出BC边的垂直平分线,这两条垂直平分线的交点就是三角形的外心。外心的性质:三角形的外心到三角形的三个顶点的距离相等。

4、内心:三角形的三个内角的平分线的交点就是三角形的内心。画法:以三角形ABC为例。

先画内角A的平分线,以顶点A为圆心,以任意长为半径画弧交AB边和AC边于M,N两点,再分别以M,N两点为圆心,以大于MN的一半长为半径画弧交于一点,过这点和A点的直线就是内角A的平分线;用同样的方法画出内角B的平分线,这两条平分线的交点就是三角形的内心。内心的性质:三角形的内心到三角形三条边的距离相等。

5、旁心:三角形相邻两外角的平分线的交点就是三角形的旁心,一个三角形有三个旁心。画法:参照内心画角平分线的方法。

旁心的性质:三角形的旁心在第三个内角的平分线上。三角形三条边的关系:两边之和大于第三边,两边之差小于第三边。

三角形三内角和定理:三角形的内角和等于180°三角形的外角和等于360°。

5.求关于小学三角形的全部知识

三角形的五心:

1、垂心:三角形三条边上的高交于一点,这点就是三角形垂心。

画法:以三角形ABC为例。先画AB边上的高,分别以A和B为圆心,分别以CA和CB为半径画弧,交于M和N两点,过M和N两点的直线就是AB边上的高线;用同样的方法画出BC边上的高线,这两条高线的交点就是三角形的垂心。

2、重心:三角形三条边上的中线交于一点,这点就是三角形的重心。

画法:以三角形ABC为例。先找AB边的中点,分别以A和B为圆心,分别以大于AB的一半长为半径画弧,交于两点,这两点的连线与AB的交点就是线段AB的中点,这个中点和C点的连线就是AB边上的中线;用同样的方法画出BC边上的中线,这两条中线的交点就是三角形的重心。

重心的性质:三角形的重心到顶点的距离等于到对边的距离的2倍。

3、外心:三角形外接圆的圆心就是三角形的外心。

画法:以三角形ABC为例。先画AB边上的垂直平分线,分别以大于AB的一半长为半径画弧,交于两点,过这两点的直线就是线段AB的垂直平分线;用同样的方法画出BC边的垂直平分线,这两条垂直平分线的交点就是三角形的外心。

外心的性质:三角形的外心到三角形的三个顶点的距离相等。

4、内心:三角形的三个内角的平分线的交点就是三角形的内心。

画法:以三角形ABC为例。先画内角A的平分线,以顶点A为圆心,以任意长为半径画弧交AB边和AC边于M,N两点,再分别以M,N两点为圆心,以大于MN的一半长为半径画弧交于一点,过这点和A点的直线就是内角A的平分线;用同样的方法画出内角B的平分线,这两条平分线的交点就是三角形的内心。

内心的性质:三角形的内心到三角形三条边的距离相等。

5、旁心:三角形相邻两外角的平分线的交点就是三角形的旁心,一个三角形有三个旁心。

画法:参照内心画角平分线的方法。

旁心的性质:三角形的旁心在第三个内角的平分线上。

三角形三条边的关系:

两边之和大于第三边,两边之差小于第三边。

三角形三内角和定理:三角形的内角和等于180°

三角形的外角和等于360°

6.关于角和三角形的知识你知道哪些

角:在几何学中,角是由两条有公共端点的射线组成的几何对象。

这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角会假设在欧几里得平面上,但在欧几里得几何中也可以定义角。

角在几何学和三角学中有着广泛的应用。角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

三角形:三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

扩展资料三角形性质:1 、在平面上三角形的内角和等于180°(内角和定理)。2 、在平面上三角形的外角和等于360° (外角和定理)。

3、在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、一个三角形的三个内角中最少有两个锐角。5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。7、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。参考资料来源:百度百科-角参考资料来源:百度百科-三角形。

7.求关于三角形的知识什么是三角形的重心、垂心、内心、外心

所谓三角形的"四心",是指三角形的四种重要线段相交而成的四类特殊点.它们分别是三角形的内心,外心,垂心与重心.1.垂心 三角形三条边上的高相交于一点,这一点叫做三角形的垂心.2.重心 三角形三条边上的中线交于一点,这一点叫做三角形的重心.3.三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心 4.三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心,重心 三边上中线的交点 垂心 三条高的交点 内心 内接圆圆心 三个角角平分线交点 外心 外接圆圆心 三条边的垂直平分线交点 还有一个心叫傍心:外角平分线的交点(有3个),(或傍切圆的圆心) 只有正三角形才有中心,这时重心,内心.外心,垂心,四心合一.。

小学三角形知识点总结

标签: 角形知识点