必修二数学知识点归纳
1.必修2数学考点总结
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。即 。
斜率反映直线与轴的倾斜程度。当 时, ; 当 时, ; 当 时, 不存在。
②过两点的直线的斜率公式: 注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程①点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。②斜截式: ,直线斜率为k,直线在y轴上的截距为b③两点式: ( )直线两点 , ④截矩式: 其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、轴的截距分别为 。
⑤一般式: (A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(二)垂直直线系垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系: ,直线过定点 ;(ⅱ)过两条直线 , 的交点的直线系方程为 ( 为参数),其中直线 不在直线系中。(6)两直线平行与垂直当 , 时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点 相交交点坐标即方程组 的一组解。方程组无解 ; 方程组有无数解 与 重合(8)两点间距离公式:设 是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点 到直线 的距离 (10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程 ,圆心 ,半径为r;(2)一般方程 当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆 , 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当 时两圆外离,此时有公切线四条;当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半。
2.高一至高二数学知识整理
(一)一 集合与简易逻辑集合具有四个性质 广泛性 集合的元素什么都可以 确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的 互异性 集合中的元素必须是互不相等的,一个元素不能重复出现无序性 集合中的元素与顺序无关二 函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等三 数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四 三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五 平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率高一的数学只是入门,只要把基础的掌握了,做题就没什么大问题了,数学就可以上130 (二)一、集合、简易逻辑(14课时,8个)1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件.二、函数(30课时,12个)1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例.三、数列(12课时,5个)1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式' 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例.五、平面向量(12课时,8个)1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移.六、不等式(22课时,5个)1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式' 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归.十三、极限(12课时,6个)1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性.十四、导数(18课时,8个)1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6。
3.高一数学必修2的知识点
高中数学必修二复习基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。 公理3: 过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。 推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面: 平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法 两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量) 规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 由此得直线和平面所成角的取值范围为 [0°,90°] 最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角 三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直 esp.直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ③直线和平面平行——没有公共点 直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
两个平面的位置关系: (1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系: 两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。 a、平行 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。 b、相交 二面角 (1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°] (3) 二面角的棱:这一条直线叫做二面角的棱。
(4) 二面角的面:这两个半平面叫做二面角的面。 (5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6) 直二面角:平面角是直角的二面角叫做直二面角。 esp. 两平面垂直 两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为 ⊥ 两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。 Attention: 二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系) 多面体 棱柱 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 棱锥 棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1) 侧棱交于一点。侧面都是三角形 (2) 平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方 正棱锥 正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面。
4.高中必修2数学重点
按高考来说,高中数学必修二最重要的是立体几何这一章,是高考的必考题,第二重要的就是解析几何,一般会融合到别的知识点一起考。
下面是高中数学必修二知识点总结一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,; 当时,; 当时,不存在.②过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上。
5.高一数学必修2的重点
我还给你找了重点课后题 结合题来看 各种空间几何体的表面积,体积计算 公式要熟记线线 线面 面面的平行垂直性质,判定,证明数轴那块不是重点,但两点间距离公式,中点坐标公式很重要直线斜率公式,几种形式,点斜,两点,截距式点到直线的距离公式圆的标准方程,一般方程直线与圆位置关系(d与r的大小比较)空间坐标系那也不是重点重点例题:P9-例2 P11-B4 P13-B3、4 P14-例2 P16-A2B3 P17-斜二视画法 P43-定理 P43-例3 P50-例1 P51-例3 P54-例5 P70-例3 P71-例4 P81-A3,B1 P84-A3 P94-例1,例2 P98-例2,3P99-例1 P100-例2 P108-公式 我是今年刚参加完高考的考生,以上是高考前数学老师给我们画的重点,可供参考。
6.高一数学知识点总结
高中数学必修4复习资料2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 二象限 第三象限 第四象限 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做 弧度.6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 .7、弧度制与角度制的换算公式: , , .8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , .10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线: , , .12、同角三角函数的基本关系: ; .13、三角函数的诱导公式:(口诀:奇变偶不变,符号看象限.) , , . , , . , , . , , . , . , .14、函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象.函数 的性质:①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: .函数 ,当 时,取得最小值为 ;当 时,取得最大值为 ,则 , , .15、正弦函数、余弦函数和正切函数的图象与性质: 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为 的向量. 单位向量:长度等于 个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式: .⑷运算性质:①交换律: ;②结合律: ;③ .⑸坐标运算:设 , ,则 .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设 , ,则 .设 、两点的坐标分别为 , ,则 .19、向量数乘运算:⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 .① ;②当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, .⑵运算律:① ;② ;③ .⑶坐标运算:设 ,则 .20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 .设 , ,其中 ,则当且仅当 时,向量 、共线.21、平面向量基本定理:如果 、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、,使 .(不共线的向量 、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点 是线段 上的一点, 、的坐标分别是 , ,当 时,点 的坐标是 .23、平面向量的数量积:⑴ .零向量与任一向量的数量积为 .⑵性质:设 和 都是非零向量,则① .②当 与 同向时, ;当 与 反向时, ; 或 .③ .⑶运算律:① ;② ;③ .⑷坐标运算:设两个非零向量 , ,则 .若 ,则 ,或 .设 , ,则 .设 、都是非零向量, , , 是 与 的夹角,则 .24、两角和与差的正弦、余弦和正切公式:⑴ ; ⑵ ;⑶ ; ⑷ ;⑸ ( );⑹ ( ).25、二倍角的正弦、余弦和正切公式:(1) . (2) (3) (4) ( , ).26、,其中 .三角函数基础训练题一.选择题 1、下列角中终边与330°相同的角是( )A.30° B.-30° C.630° D.-630°2、角α的终边落在区间(-3π,-52 π)内,则角α所在象限是 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、已知角α的终边过点P(-1,2),cos 的值为 ( ) A.- B.-5 C. D. 4、如果 则 的取值范围是 ( ) A. B. C. D. 5、函数 的图象可看作是函数 的图象,经过如下平移得到的,其中正确的是( ). A.向右平移 个单位 B.向左平移 个单位 C.向右平移 个单位 D.向左平移 个单位6、与函数 图象不相交的一条直线是( ).A. B. C. D. 7、α是第四象限角,则下列数值中一定是正值的是 ( ) A.sin B.cos C.tan D. 8、已知sinαcosα = 18 ,则cosα-sinα的值等于 ( ) A.±34 B.± C. D.- 9、如果角 满足 ,那么 的值是 ( ) A. B. C. D. 10、sin •cos •tan 的值是( ) A.- B. C.- D. 11、已知 那么 ( ) A. B. C. D. 12、已知 ,那么 的值为 ( ) A. B. C. D. 13、的值是( ) A.2 B.4 C.8 D.1614、函数 的定义域为( ).A. B. C. D. 且 二.填空题15、函数 的周期是________________________.16、与1991°终边相同的最小正角是_________,绝对值最小的角是__________.17、若 ,则 的值为____________.18、已知sin tan ≥0,则 的取值集合为 .19。
7.求高中数学必修一二的知识点汇总
一、指数函数(一)指数与指数幂的运百算1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中1,且∈*.当是奇数时,正数的次方根是一个正数,负度数的次方根是一个负数.此时,内的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).当是容偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,,当是偶数时,。
8.高一数学知识总结
试读结束,如需阅读或下载,请点击购买> 原发布者:可问春风 高一数学函数的知识点总结1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)(3)。
9.高中数学必修2有哪些重点
我不知道你的版本我把要点给你吧希望你是这个版本的如果不是你可以去百度题库去找.其实必修二在高考其实是相当简单的关键是第3单元和证明立体垂直平行的.几乎每年高考都考但难度不大.要是只是平时考试那会有点难度证明立体垂直平行和圆的方程必定有一两题希望能帮到你我常在有问题请在问第一章 立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=还有其它章的知识点梳理:一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。
即。斜率反映直线与轴的倾斜程度。
当时,; 当时,; 当时,不存在。②过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。⑤一般式:(A,B不全为0)注意:各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。
(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点相交交点坐标即方程组的一组解。
方程组无解 ; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则 (9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的。