追及及相遇问题的知识

bdqnwqk2年前问题20

1.追及与相遇问题

运动学中的追及、相遇和多解问题是运动学中的一个较为复杂的问题,掌握追及、相遇问题的研究方法和解题思路,了解多解形成原因,细致分析运动过程,多思考总结,比较归类,应是有效解决此类问题途径.(一) 追及相遇问题1.追及问题例如:A追赶B时(如图)若VA>VB,则AB距离缩小;若VA=VB,则AB距离不变;若VA>>>乙:匀 速(v2) 一定能追上 2、甲:匀 速(v1)====>>>>乙:匀减速(v2) 一定能追上 追上前当v1=v2时,两者间距最大.(开始时,速度大的乙在前,在后的甲速度较小,间距越来越大,只有甲速度大于乙速度,间距才能越来越小,故两者速度相等时,间距最大.) v1(在后) 大于 v2(在前)3、甲:匀 速(v1)====>>>>乙:匀加速(v2) 不一定能追上 4、甲:匀减速(v1)====>>>>乙:匀 速(v2) 不一定能追上 匀减速物体追赶同向匀速运动物体时,恰能追上或恰不能追上的临界条件是: V追赶者=V被追赶者, 此时△s=0即 V追赶者> V被追赶者 则一定能追上V追赶者v2,则会相撞,若v1=v2,则刚好相撞.若t无解,说明两者不能同时处于同一位置,追不上. 若追不上,当v1=v2时,两者间距最小.(开始时,速度大的甲在后,在前的乙速度较小,间距越来越小,只有乙速度大于甲速度,间距才能越来越大,故两者速度相等时,间距最小.)★注意:相遇(或相撞)的临界条件是:两物体处在同一位置时,两物体的速度刚好相等.。

2.物理追及和相遇问题,详细讲解

1.追及问题的解决方法:这类问题一般是同向的、速度快的追慢的,或者后走的追先走的一类问题。如果由同一地点出发,追上时两者的路程相等,难理解得是你走他也走,总觉得动态很乱套,但只要理解和运用好速度之差,就不难了。若求追及的时间:就用该路程除以两者速度之差;若求路程:就用某一速度乘以其走得时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。

2.相遇问题的解决方法:这类问题一般是从甲乙两地相向而行,相遇时两者的路程之和等于甲乙间的距离。若求相遇的时间:就用两者的距离除以两者速度之和;若求两地的距离:就用两者速度之和乘以相遇时用的时间;若求某一速度:就要先找出其走的路程,再除以所用得时间。

3.追及问题,相遇问题各10道

(一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)*相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度

(二)追及问题

追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。 根据速度差、距离差和追及时间三者之间的关系,常用下面的公式: 距离差=速度差*追及时间

追及时间=距离差÷速度差

速度差=距离差÷追及时间

速度差=快速-慢速

解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

(三)二、相离问题 两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的憨户封鞠莩角凤携脯毛关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和*相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间

流水问题 顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。

船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。各种速度的关系如下:

(1)划行速度+水流速度=顺流速度

(2)划行速度-水流速度=逆流速度

(3)(顺流速度+ 逆流速度)÷2=划行速度

(4)(顺流速度-逆流速度)÷2=水流速度 流水问题的数量关系仍然是速度、时间与距离之间的关系。即:速度*时间=距离;距离÷速度=时间;距离÷时间=速度。但是,河水是流动的,这就有顺流、逆流的区别。在计算时,要把各种速度之间的关系弄清楚是非常必要的。

4.追及与相遇问题

运动学中的追及、相遇和多解问题是运动学中的一个较为复杂的问题,掌握追及、相遇问题的研究方法和解题思路,了解多解形成原因,细致分析运动过程,多思考总结,比较归类,应是有效解决此类问题途径。

(一) 追及相遇问题

1.追及问题

例如:A追赶B时(如图)若VA>VB,则AB距离缩小;若VA=VB,则AB距离不变;若VA2.相遇问题

1)同向运动的两物体:相遇问题就是追及问题

2)相向运动的两物体:当各自发生的位移的代数和等于开始时两物体间的距离时,即相遇

3.在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件:

其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置问题

(二)把握的关系

1.两个关系:即时间关系和位移关系

2.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

(三)常见的情况

v1(在后) 小于 v2(在前)

1、甲:匀加速(v1)====>>>>;乙:匀 速(v2) 一定能追上

2、甲:匀 速(v1)====>>>>;乙:匀减速(v2) 一定能追上

追上前当v1=v2时,两者间距最大。(开始时,速度大的乙在前,在后的甲速度较小,间距越来越大,只有甲速度大于乙速度,间距才能越来越小,故两者速度相等时,间距最大。)

v1(在后) 大于 v2(在前)

3、甲:匀 速(v1)====>>>>;乙:匀加速(v2) 不一定能追上

4、甲:匀减速(v1)====>>>>;乙:匀 速(v2) 不一定能追上

匀减速物体追赶同向匀速运动物体时,恰能追上或恰不能追上的临界条件是:

V追赶者=V被追赶者, 此时△s=0

即 V追赶者> V被追赶者 则一定能追上

V追赶者<V被追赶者 则一定不能追上

假设在追赶过程中经时间t后两者能处在同一位置,找位移关系列方程,求解t.

若t有解,说明能处在同一位置,能追上,比较此时的速度,若v1>v2,则会相撞,若v1=v2,则刚好相撞。

若t无解,说明两者不能同时处于同一位置,追不上。

若追不上,当v1=v2时,两者间距最小。(开始时,速度大的甲在后,在前的乙速度较小,间距越来越小,只有乙速度大于甲速度,间距才能越来越大,故两者速度相等时,间距最小。)

★注意:相遇(或相撞)的临界条件是:两物体处在同一位置时,两物体的速度刚好相等。

5.追及和相遇问题有哪些类型,怎么写过程

1。

追及和相遇问题当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题。2。

追及问题的两类情况(1)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):①当两者速度相等时,若两者位移之差仍小于初始时的距离,则永远追不上,此时两者间有 最小 距离。 ②若两者位移之差等于初始时的距离,且两者速度相等时,则恰能追上,也是两者相遇时 避免碰撞 的临界条件。

③若两者位移之差等于初始时的距离时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有 一个极大 值。(2)速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):①当两者速度相等时有 最大距离 。

②若两者位移之差等于初始时的距离时,则追上。3。

相遇问题的常见情况(1)同向运动的两物体追及即相遇。(2)相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。

重点难点突破一、追及和相遇问题的常见情形1。速度小者追速度大者常见的几种情况:类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小④能追及且只能相遇一次注:x0为开始时两物体间的距离匀速追匀减速匀加速追匀减速 2。

速度大者追速度小者常见的情形:类型图象说明匀减速追匀速开始追及时,后面物体与前面物体间距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δxx0,则相遇两次,设t1时刻Δx1=x0两物体第一次相遇,则t2时刻两物体第二次相遇注:x0是开始时两物体间的距离匀速追匀加速匀减速追匀加速 二、追及、相遇问题的求解方法分析追及与相遇问题大致有两种方法,即数学方法和物理方法,具体为:方法1:利用临界条件求解。 寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离。

方法2:利用函数方程求解。利用不等式求解,思路有二:其一是先求出在任意时刻t两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t)≤0,则这两个物体可能相遇。

其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇。方法3:利用图象求解。

若用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇;若用速度图象求解,则注意比较速度图线与t轴包围的面积。 方法4:利用相对运动求解。

用相对运动的知识求解追及或相遇问题时,要注意将两个物体对地的物理量(速度、加速度和位移)转化为相对的物理量。在追及问题中,常把被追及物体作为参考系,这样追赶物体相对被追物体的各物理量即可表示为:s相对=s后-s前=s0,v相对=v后-v前,a相对=a后-a前,且上式中各物理量(矢量)的符号都应以统一的正方向进行确定。

三、分析追及、相遇问题的思路和应注意的问题1。解“追及”、“相遇”问题的思路(1)根据对两物体运动过程的分析,画出物体的运动示意图。

(2)根据两物体的运动性质,分别列出两物体的位移方程。注意要将两物体运动时间的关系反映在方程中。

(3)由运动示意图找出两物体位移间的关联方程。 (4)联立方程求解。

2。分析“追及”、“相遇”问题应注意的几点(1)分析“追及”、“相遇”问题时,一定要抓住“一个条件,两个关系”:“一个条件”是两物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等。

“两个关系”是时间关系和位移关系。 其中通过画草图找到两物体位移之间的数量关系,是解题的突破口。

因此,在学习中一定要养成画草图分析问题的良好习惯,因为正确的草图对帮助我们理解题意、启迪思维大有裨益。(2)若被追赶的物体做匀减速运动,一定要注意追上该物体前是否停止运动。

(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,要满足相应的临界条件。 典例精析1。

运动中的追及和相遇问题【例1】在一条平直的公路上,乙车以10 m/s的速度匀速行驶,甲车在乙车的后面做初速度为15 m/s,加速度大小为0。5 m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。

【解析】设两车速度相等经历的时间为t,则甲车恰能追上乙车时,应有v甲t- =v乙t+L其中t= ,解得L=25 m若L>25 m,则两车等速时也未追及,以后间距会逐渐增大,即两车不相遇。若L=25 m,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大。

6.物理中的追击和相遇问题有哪几种情况

1.追及和相遇问题 当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题.2.追及问题的两类情况(1)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):①当两者速度相等时,若两者位移之差仍小于初始时的距离,则永远追不上,此时两者间有 最小 距离.②若两者位移之差等于初始时的距离,且两者速度相等时,则恰能追上,也是两者相遇时 避免碰撞 的临界条件.③若两者位移之差等于初始时的距离时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有 一个极大 值.(2)速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):①当两者速度相等时有 最大距离 .②若两者位移之差等于初始时的距离时,则追上.3.相遇问题的常见情况(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇.重点难点突破 一、追及和相遇问题的常见情形1.速度小者追速度大者常见的几种情况:类型 图象 说明 匀加速追匀速 ①t=t0以前,后面物体与前面物体间距离增大 ②t=t0时,两物体相距最远为x0+Δx ③t=t0以后,后面物体与前面物体间距离减小 ④能追及且只能相遇一次 注:x0为开始时两物体间的距离 匀速追匀减速 匀加速追匀减速 2.速度大者追速度小者常见的情形:类型 图象 说明 匀减速追匀速 开始追及时,后面物体与前面物体间距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件 ②若Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0两物体第一次相遇,则t2时刻两物体第二次相遇 注:x0是开始时两物体间的距离 匀速追匀加速 匀减速追匀加速 二、追及、相遇问题的求解方法 分析追及与相遇问题大致有两种方法,即数学方法和物理方法,具体为:方法1:利用临界条件求解.寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离.方法2:利用函数方程求解.利用不等式求解,思路有二:其一是先求出在任意时刻t两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t)≤0,则这两个物体可能相遇.其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇.方法3:利用图象求解.若用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇;若用速度图象求解,则注意比较速度图线与t轴包围的面积.方法4:利用相对运动求解.用相对运动的知识求解追及或相遇问题时,要注意将两个物体对地的物理量(速度、加速度和位移)转化为相对的物理量.在追及问题中,常把被追及物体作为参考系,这样追赶物体相对被追物体的各物理量即可表示为:s相对=s后-s前=s0,v相对= v后-v前,a相对=a后-a前,且上式中各物理量(矢量)的符号都应以统一的正方向进行确定.三、分析追及、相遇问题的思路和应注意的问题1.解“追及”、“相遇”问题的思路(1)根据对两物体运动过程的分析,画出物体的运动示意图.(2)根据两物体的运动性质,分别列出两物体的位移方程.注意要将两物体运动时间的关系反映在方程中.(3)由运动示意图找出两物体位移间的关联方程.(4)联立方程求解.2.分析“追及”、“相遇”问题应注意的几点(1)分析“追及”、“相遇”问题时,一定要抓住“一个条件,两个关系”:“一个条件”是两物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等.“两个关系”是时间关系和位移关系.其中通过画草图找到两物体位移之间的数量关系,是解题的突破口.因此,在学习中一定要养成画草图分析问题的良好习惯,因为正确的草图对帮助我们理解题意、启迪思维大有裨益.(2)若被追赶的物体做匀减速运动,一定要注意追上该物体前是否停止运动.(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,要满足相应的临界条件.典例精析1.运动中的追及和相遇问题 【例1】在一条平直的公路上,乙车以10 m/s的速度匀速行驶,甲车在乙车的后面做初速度为15 m/s,加速度大小为0.5 m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动).【解析】设两车速度相等经历的时间为t,则甲车恰能追上乙车时,应有 v甲t- =v乙t+L 其中t= ,解得L=25 m 若L>25 m,则两车等速时也未追及,以后间距会逐渐增大,即两车不相遇.若L=25 m,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大.若L【思维提升】对于追及。

追及及相遇问题的知识

标签: 知识