求高中数学必修1的知识点总结

bdqnwqk1年前基础12

  1。集合
  (约4课时)
  (1)集合的含义与表示
  ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
  ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
  
  (2)集合间的基本关系
  ①理解集合之间包含与相等的含义,能识别给定集合的子集。
  ②在具体情境中,了解全集与空集的含义。
  (3)集合的基本运算
  ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
  
  ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
  ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2。函数概念与基本初等函数I
  (约32课时)
  (1)函数
  ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
  
  ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
  ③了解简单的分段函数,并能简单应用。
  ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
  
  ⑤学会运用函数图象理解和研究函数的性质(参见例1)。
  (2)指数函数
  ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
  ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
  
  ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
  ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
  (3)对数函数
  ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
  
  ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
  ③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
  
  (4)幂函数
  通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
  (5)函数与方程
  ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
  
  ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
  (6)函数模型及其应用
  ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
  
  ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
  (7)实习作业
  根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
  具体要求参见数学文化的要求。