必修一函数知识点总结
1.【高一数学必修一公式总结】
三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 积化和差 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 和差化积 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsin 集合与函数概念一,集合有关概念1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2,集合的中元素的三个特性:1.元素的确定性; 2.元素的互异性; 3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.3,集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}2.集合的表示方法:列举法与描述法.注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:n正整数集 n*或 n+ 整数集z 有理数集q 实数集r关于"属于"的概念集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a 记作 a∈a ,相反,a不属于集合a 记作 a(a列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2}4,集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二,集合间的基本关系1."包含"关系—子集注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba2."相等"关系(5≥5,且5≤5,则5=5)实例:设 a={x|x2-1=0} b={-1,1} "元素相同"结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b① 任何一个集合是它本身的子集.a(a②真子集:如果a(b,且a( b那就说集合a是集合b的真子集,记作ab(或ba)③如果 a(b,b(c ,那么 a(c④ 如果a(b 同时 b(a 那么a=b3.不含任何元素的集合叫做空集,记为φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.三,集合的运算1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.3,交集与并集的性质:a∩a = a,a∩φ= φ,a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.4,全集与补集(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)记作:csa 即 csa ={x ( x(s且 x(a}(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.(3)性质:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u 给个分哦亲(有全了)嘿嘿。
2.高一数学必修一函数知识总结
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:宋西权123
1、集合的概念:某些Array的全体叫集合,用Array字母表示;集合中的Array叫做这个集合的元素,用Array字母表示;2、集合的表示方法有:(1)Array法(把集合的所有元素一一列举并写在大括号内);(2)Array法(把集合中元素的公共属性描述出来写在大括号内);3、集合中元素的特征有Array;4、元素与集合的关系有:Array和Array;5、集合分类:(1)把不含任何元素的集合叫做Array;(2)含有有限个元素的集合叫做Array;(3)含有无穷个元素的集合叫做Array;6、常用数集及其记法:(1)自然数集:记作;e799bee5baa6e997aee7ad94e59b9ee7ad9431333433623735(2)正整数集:记作;(3)整数集:记作;(4)有理数(包括整数和分数)集:记作;(5)实数(包括有理数和无理数)集:记作;7、集合与集合的关系有:Array(包含于,)、Array(真包含于,)、Array(=);8、子集的概念:如果集合A中的每一个元素都是集合B中的元素,那么集合A叫做集合B的Array,记作;9、真子集的概念:若集合A是集合B的子集,且B中至少有一个元素不属于A,那么集合A叫做集合B的Array,记作;(真子集是除本身以外的子集)10、子集、真子集的性质:(1)传递性:若,,则;(2)空集是任意集合的Array,是任意非空集合的Array;(3)任何一个集合是它本身的Array;(在写子集时首先注意两个特殊的子集----空集和它本身)11、集合相等:(1)若集合A中的元素与集合B中的Array,则称集合A等于集合B,记作;(2)(即互为子集)。12、n个元素的集合其子集
3.高一数学函数知识点
(一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的。
4.谁有高中数学必修一的全部知识点整理,一定要全.简洁
高中数学知识点总结1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?注重借助于数轴和文氏图解集合问题。空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性质:(3)德摩根定律:4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。6.命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假。7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)
8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9.求函数的定义域有哪些常见类型?10.如何求复合函数的定义域?义域是_____________。11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12.反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)13.反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;14.如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?∴……)15.如何利用导数判断函数的单调性?值是()A.0B.1C.2D.3∴a的最大值为3)16.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17.你熟悉周期函数的定义吗?函数,T是一个周期。)如:18.你掌握常用的图象变换了吗?注意如下“翻折”变换:19.你熟练掌握常用函数的图象和性质了吗?的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m,n]上的最值。③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。由图象记性质!(注意底数的限定!)利用它的单调性求最值与利用均值不等式求最值的区别是什么?20.你在基本运算上常出现错误吗?21.如何解抽象函数问题?(赋值法、结构变换法)22.掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
如求下列函数的最值:23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24.熟记三角函数的定义,单位圆中三角函数线的定义25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?(x,y)作图象。27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29.熟练掌握三角函数图象变换了吗?(平移变换、伸缩变换)平移公式:图象?30.熟练掌握同角三角函数关系和诱导公式了吗?“奇”、“偶”指k取奇、偶数。A.正值或负值B.负值C.非负值D.正值31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)具体方法:(2)名的变换:化弦或化切(3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。)33.用反三角函数表示角时要注意角的范围。
34.不等式的性质有哪些?答案:C35.利用均值不等式:值?(一正、二定、三相等)注意如下结论:36.不等式证明的基本方法都掌握了吗?(比较法、分析法、综合法、数学归纳法等)并注意简单放缩法的应用。(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始39.解含有参数的不等式要注意对字母参数的讨论40.对含有两个绝对值的不等式如何去解?(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)证明:(按不等号方向放缩)42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)43.等差数列的定义与性质0的二次函数)项,即:44.等比数列的定义与性质46.你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法解:[练习](2)叠乘法解:(3)等差型递推公式[练习](4)等比型递推公式[练习](5)倒数法47.你熟悉求数列前n项和的常用方法吗?例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
解:[练习](2)错位相减法:(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。[练习]48.你知道储蓄、贷款问题吗?△零存整取储蓄(单利)本利和计算模型:若每期存入本。
5.高一数学必修1函数概念知识总结
1、指数函数(且),其中是自变量,叫做底数,定义域是R2、若,则叫做以为底的对数。
记作:(,)其中,叫做对数的底数,叫做对数的真数。注:指数式与对数式的互化公式:3、对数的性质(1)零和负数没有对数,即中;(2)1的对数等于0,即;底数的对数等于1,即4、常用对数:以10为底的对数叫做常用对数,记为:自然对数:以e(e=2.71828…)为底的对数叫做自然对数,记为:5、对数恒等式:6、对数的运算性质(a>0,a≠1,M>0,N>0)(1);(2);(3)(注意公式的逆用)7、对数的换底公式(,且,,且,).推论①或;②.8、对数函数(,且):其中,是自变量,叫做底数,定义域是图像性质定义域:(0,∞)值域:R过定点(1,0)增函数减函数取值范围01时,y>000x>1时,y。
6.高一数学必修一的全部知识点
高一数学上册第一章 集合与简易逻辑 一 集合 1.1 集合 1.2 子集、全集、补集 1.3 交集、并集 1.4 含绝对值的不等式解法 1.5 一元一次不等式解法 阅读材料 集合中元素的个数 二 简易逻辑 1.6 逻辑联结词 1.7 四种命题 1.8 充分条件与必要条件 小结与复习 复习参考题一 第二章 函数 一 函数 2.1 函数 2.2 函数的表示法 2.3 函数的单调性 2.4 反函数 二 指数与指数函数 2.5 指数 2.6 指数函数 三 对数与对数函数 2.7 对数 阅读材料 对数的发明 2.8 对数函数 2.9 函数的应用举例 阅读材料 自由落体运动的数学模型 实习作业 建立实际问题的函数模型 小结与复习 复习参考题二 第三章 数列 3.1 数列 3.2 等差数列 3.3 等差数列的前n项和 阅读材料 有关储蓄的计算 3.4 等比数列 3.5 等比数列的前n项和 研究性学习课题:数列在分期付款中的应用 小结与复习 复习参考题三 高一数学下册第四章 三角函数 一 任意角的三角函数 4.1 角的概念的推广 4.2 弧度制 4.3 任意角的三角函数 阅读材料 三角函数与欧拉 4.4 同角三角函数的基本关系式 4.5 正弦、余弦的诱导公式 二 两角和与差的三角函数 4.6 两角和与差的正弦、余弦、正切 4.7 二倍角的正弦、余弦、正切 三 三角函数的图象和性质 4.8 正弦函数、余弦函数的图象和性质 4.9 函数y=Asin(ωx+φ)的图象 4.10 正切函数的图象和性质 4.11 已知三角函数值求角 阅读材料 潮汐与港口水深 小结与复习 复习参考题四第五章 平面向量 一 向量及其运算 5.1 向量 5.2 向量的加法与减法 5.3 实数与向量的积 5.4 平面向量的坐标运算 5.5 线段的定比分点 5.6 平面向量的数量积及运算律 5.7 平面向量数量积的坐标表示 5.8 平移 阅读材料 向量的三种类型 二 解斜三角形 5.9 正弦定理、余弦定理 5.10 解斜三角形应用举例 实习作业 解三角形在测量中的应用 阅读材料 人们早期怎样测量地球的半径? 研究性学习课题:向量在物理中的应用 小结与复习 复习参考题五。
7.高中数学必修一公式总结.
第一章 集合(jihe)与函数概念 一、集合(jihe)有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素. 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素. (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素. (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样. (4)集合元素的三个特性使集合本身具有了确定性和整体性. 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法. 注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上. 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法. ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集.AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x xS且 xA} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示. (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域.) 2. 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决。
8.高一数学必修1函数概念知识总结
1、指数函数 ( 且 ),其中 是自变量, 叫做底数,定义域是R2、若 ,则 叫做以 为底 的对数。
记作: ( , )其中, 叫做对数的底数, 叫做对数的真数。注:指数式与对数式的互化公式: 3、对数的性质(1)零和负数没有对数,即 中 ;(2)1的对数等于0,即 ;底数的对数等于1,即 4、常用对数 :以10为底的对数叫做常用对数,记为: 自然对数 :以e(e=2.71828…)为底的对数叫做自然对数,记为: 5、对数恒等式: 6、对数的运算性质(a>0,a≠1,M>0,N>0)(1) ; (2) ;(3) (注意公式的逆用)7、对数的换底公式 ( ,且 , ,且 , ).推论① 或 ; ② .8、对数函数 ( ,且 ):其中, 是自变量, 叫做底数,定义域是 图像性质 定义域:(0, ∞) 值域:R 过定点(1,0) 增函数 减函数取值范围 0
要求掌握 这五种情况(如下图)11、幂函数 的性质及图象变化规律:(Ⅰ)所有幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(Ⅱ)当 时,幂函数的图象都通过原点,并且在区间 上是增函数.(Ⅲ)当 时,幂函数的图象在区间 上是减函数。.。
9.高一数学必修一知识点和公式
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 ;V=s*h 圆柱体 V=pi*r2h。