有关苏步青数学的成就

bdqnwqk2年前百科21

苏步青的研究方向主要是微分几何。1872年,德国数学家F.克莱因(Klein)提出了著名的“爱尔兰根计划书”,在其中总结了当时几何学发展的情况,认为每一种几何学都联系一种变换群,每种几何学所研究的内容就是在这些变换群下的不变性质。除了欧氏空间运动群之外,最为人们所熟悉的有仿射变换群和射影变换群。因而,在19世纪末期和本世纪的最初三四十年中,仿射微分几何学和射影微分几何学都得到很迅速的发展。苏步青的大部分研究工作是属于这个方向的。此外,他还致力于一般空间微分几何学和计算几何学的研究。一共发表了156篇学术论文,并有专著和教材十多部。他的不少成果已被许多国家的数学家大量引用或作为重要的内容被写进他们的专著。当时在国际上处于热门。他的成就之一就是引进和决定了仿射铸曲面和仿射旋转曲面,他决定了所有仿射铸曲面并讨论了它们的性质,仿射旋转曲面是仿射铸曲面的一种特殊情形,它的特征是这种曲面的仿射法线必和一条定直线相交,因而它们是普通的旋转曲面非常自然的推广。 苏步青对仿射微分几何的另一极其美妙的发现是:他对一般的曲面,构作出一个仿射不变的4次(3阶)的代数锥面。在仿射的曲面理论中为人们注目的许多协变几何对象,包括2条主切曲线,3条达布(Dfarboux)切线,3条塞格雷(Segre)切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来,形成一个十分引人入胜的构图,这锥面被命名为苏锥面。苏步青的关于仿射微分几何学的成果,使他在30年代初就成为世界上著名的微分几何学家,后来据此写成了《仿射微分几何》(1981年出版)一书,评论者(美国《数学评论》 )认为,许多内容是“绝对杰出的”,还说,“这本漂亮的、现代化的书是任何学术图书馆所必备的”。你可以在百度百科里找到苏步青院士的生平及成就