初中数学数据的分析知识点总结

bdqnwqk2年前百科19

1.人教版数学初一第十章数据的收集、整理与描述知识点归纳

一、数据处理的基本过程数据处理的基本过程:收集数据、整理数据、描述数据、分析数据、得出结论二、表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.三、常见统计图1)条形统计图:能清楚地表示出每个项目的具体数目;2)扇形统计图: 能清楚地表示出各部分与总量间的比重;3)折线统计图: 能反映事物变化的规律.

如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点【满意】即可。~你的采纳是我前进的动力~~~如还有新的问题,请另外向我求助,答题不易,敬请谅解~~O(∩_∩)O,记得好评和采纳,互相帮助祝学习进步!

2.初一数学的重点

第一章 有理数 1。

1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。 与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1。2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1。3 有理数的加减法 有理数加法法则: 1。

同号两数相加,取相同的符号,并把绝对值相加。 2。

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 互为相反数的两个数相加得0。

3。一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。 1。

4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。 在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a*10的n次方的形式,使用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程 2。1 从算式到方程 方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质: 1。等式两边加(或减)同一个数(或式子),结果仍相等。

2。等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2。2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步 3。1 多姿多彩的图形 几何体也简称体(solid)。

包围着体的是面(surface)。 3。

2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。 连接两点间的线段的长度,叫做这两点的距离。

3。3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3。

4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。 如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。

等角(同角)的补角相等。 等角(同角)的余角相等。

第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程 。

3.初中数学的重点与难点

中考数学公式定理点线角定理: 点的定理:过两点有且只有一条直线 点的定理:两点之间线段最短 角的定理:同角或等角的补角相等 角的定理:同角或等角的余角相等 直线定理:过一点有且只有一条直线和已知直线垂直 直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短平行定理: 经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行平行性质: 1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行平行推论: 1、两直线平行,同位角相等 2、两直线平行,内错角相等 3、两直线平行,同旁内角互补三角形内角定理: 定理:三角形两边的和大于第三边 推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 推论1:直角三角形的两个锐角互余 推论2:三角形的一个外角等于和它不相邻的两个内角的和 推论3:三角形的一个外角大于任何一个和它不相邻的内角全等三角形判定定理:定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角的平分线定理:定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理: 等腰三角形的两个底角相等(即等边对等角) 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 推论3:等边三角形的各角都相等,并且每一个角都等于60° 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等 角对等边) 推论1:三个角都相等的三角形是等边三角形 推论2:有一个角等于60°的等腰三角形是等边三角形对称定理 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 定理1:关于某条直线对称的两个图形是全等形 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理:定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。

勾股定理的逆定理:如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形。多边形内角和定理:定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角的和等于(n-2)*180° 推论:任意多边的外角和等于360°平行四边形定理:平行四边形性质定理1:平行四边形的对角相等 2:平行四边形的对边相等 3:平行四边形的对角线互相平分 推论:夹在两条平行线间的平行线段相等平行四边形判定定理1:两组对角分别相等的四边形是平行四边形 2:两组对边分别相等的四边形是平行四边形 3:对角线互相平分的四边形是平行四边形 4:一组对边平行相等的四边形是平行四边形矩形的定理 性质:1:矩形的四个角都是直角 2:矩形的对角线相等 判定:1:有三个角是直角的四边形是矩形 2:对角线相等的平行四边形是矩形菱形性质定理 1:菱形的四条边都相等 2:菱形的对角线互相垂直,并且每一条对角线平分一组对角 菱形面积=对角线乘积的一半,即S=(a*b)÷2菱形判定定理 1:四边都相等的四边形是菱形 2:对角线互相垂直的平行四边形是菱形正方形定理:正方形性质定理1:正方形的四个角都是直角,四条边都相等 2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角中心对称定理:定理1:关于中心对称的两个图形是全等的 2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理:等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等 2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形 2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2:经过三角形一边的。

4.人教版初中数学所学的所有知识点归纳

常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)*180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a*b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直。

5.求初中数学知识点归纳总结与题型

中考数学复习提纲\x09第一部分 代数式\x09一、中考要求\x091、整式的有关知识,包括代数式、同类项、单项式、多项式等;\x092、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活应用;\x093、熟练运用提公因式法及公式法进行分解因式;\x094、了解分式的有关概念的基本性质;\x095、熟练进行分式的加、减、乘、除、乘方的运算和应用.\x09二、命题预测:\x092009年中考整式的有关知识及整式的四则运算仍然会以填空、选择和解答题的形式出现,乘法公式、因式分解将融合到综合题中去进行考查;数与式的应用题将是今后中考的一个热点.分式的概念及性质运算仍是考查的重点.要特别注意分式的应用题,即要熟悉背景材料,又要从实际问题中抽象出数学模型.\x09三、备考策略\x09掌握整式的有关概念及运算法则,在运算过程中注意运算顺序,掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视.要掌握并灵活运用分式的基本性质,在通分和约分时都要注意分解因式知识的应用.化简求值题,一要注意整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型.\x09第二部分 实数一、中考要求1、正确理解实数的有关概念;2、借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3、掌握科学记法数表示一个数,熟悉按精确度处理近似值;4、掌握实数的四则运算、乘方、开方运算以及混合运算;5、会用多种方法进行实数的大小比较.二、命题预测\x09通过2008的中考,可以预测2009年中考将继续考查实数的有关概念,关注以实际生活题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法等题目;实数的四则运算、乘方、开方运算以及混合运算;实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题.三、备考策略\x09牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用.\x09第三部分 三角形\x09一、中考要求\x091、线段的和与差及线段的中点;\x092、角的概念、分类及计算;\x093、对顶角、余角、补角的性质及计算;度、分、秒的换算;\x094、垂线、垂线段、线段的垂直平分线的定义及性质;\x095、直线平行的条件的应用;\x096、平行线性质的应用;\x097、三角形三边的关系;三角形的分类;\x098、三角形内角和定理;\x099、全等三角形的性质;\x0910、三角形全等的条件;\x0911、三角形中位线的定义及性质;\x0912、等腰三角形的性质及判定;\x0913、直角三角形的性质及判定.\x0914、直角三角形中有关三角函数的计算.\x0915、知道方位角、俯角、仰角、坡角的概念,并能利用这些角来解决简单的实际问题.\x09二、命题预测\x092009年中考,将继续考查线段的中点的概念及应用,对顶角、余角、补角的性质及应用,继续考查垂线、线段的垂直平分线的性质的应用,平行线性质与判定方法的应用及三角函数的应用.全等三角形的性质和判定条件,等腰三角形、直角三角形的性质和判定条件.要求能够利用方位角等角来解决简单的实际问题.\x09三、备考策略\x091、认真掌握好线段中点的定义及相关表示方法,对顶角、邻补角、余角的性质;\x092、认真掌握垂线、线段、垂直平分线的性质与判定;平行线的性质与判定方法.\x093、熟练掌握与三角形有关的基本知识和基本技能;三角形全等的性质和判别条件,并需注意将有关知识应用到综合题的解题过程中去,如把某些问题化为三角形的问题求解;能从复杂的图形中寻求全等的三角形.\x094、能利用三角函数解决简单的实际问题.\x095、利用方位角等来解决实际问题.\x09第四部分 四边形\x09一、中考要求\x091、多边形的内角和,外角和定理;\x092、平面图形密铺的条件;\x093、平行四边形的性质;\x094、平行四边形的判定条件;\x095、矩形、菱形、正方形的概念及性质的应用;\x096、平行四边形、矩形、菱形、正方形的关系;\x097、平行四边形、矩形、菱形、正方形的条件的应用;\x098、梯形、直角梯形的定义及应用;\x099、等腰梯形的定义性质及判定方法的应用.\x09二、命题预测\x092009年中考将继续考查多边形的内、外角和公式的应用,平行四边形的性质和判定方法的应用,考查特殊平行四边形的性质与判定方法,其中菱形、矩形、正方形的性质与判定将是考查的重点,关注特殊四边形与函数类问题结合的题型;将继续考查梯形有关的计算与证明,其中等腰梯形的性质与判定方法的应用是考查的重点.\x09三、备考策略\x091、熟记多边形的内角和公式、外角和公式,会利用公式求多边形的边数;理解平行四边形的面积、周长、对称性,掌握平行四边形的性质.\x092、掌握矩形、菱形、正方形的相关性质和判定方法,进行证明和计算,要注意培养数形结合的能力,灵活运用知识解决综合性问题的能力.\x093、理解梯形、直角梯形的有关概念,会进行有关计算,掌握等腰梯形的性质与判定方法的应用,熟练。

6.初中数学知识点总结

那么这两个图 形关于这条直线对称 46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等、b,如果它们的对应线段或延长线相交,那么这两个角所对 的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,那么对称轴是对应点连线的垂直平 分线 44 定理 3 两个图形关于某直线对称,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,那 么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,两直线平行 10 内错角相等常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等、c有关系a^2+b^2=c^2 ,那 么这个三角形是直角三角形 48 定理 四边形的内角和等于360° 49 四边形的外角和等于360° 50 多边形内角和定理 n边形的内角的和等于(n-2)*180° 51 推论 任意多边的外角和等于360° 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即 S=(a*b)÷2 67 菱形判定定理 1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每 条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对 称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那 么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么 在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L= (a+b)÷2 S=L*h 83 (1)比例的基本性质 如果 a:b=c:d,那么 ad=bc如果ad=bc,那么 a:b=c:d 84 (2)合比性质 如果 a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/ (b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 。

7.初中数学知识归纳

晕,打了我10来个小时·~·#~!·谢谢大家给面子看啊~ |原创|复习 一、数与代数 A:数与式:1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。 减法: 减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2:实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。 3:代数式 代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4:整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM。

AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。

A0=1,A-P=1/AP 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式 方法:提公因式法/运用公式法/分组分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。 B:方程与不等式 1:方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,。

8.初中数学知识要点

一、函数

10、点 关于x轴的对称点是 ,关于y轴的对称点是 ;关于原点的对称点是

11,两点 距离:

在x轴上两点: 在y轴上两点:

12、一次函数 ,b叫截距,b可以为任何数。

例: = 的截距是3

13、二次函数:

(1) 一般式: 对称轴是

(2) 顶点式: 的对称轴是 -m,k)

(3) 交点式: ,其中( ),( )是抛物线与x轴的交点

二、统计初步:

14、中位数:将一组数据按照从小到大依次排列,处在最中间的一个数据(或中间两个数据的平均数)

15、方差:

16、频率= ,总数= ,频数=总数*频率

所有的频率之和等于1,即所有的小长方形的面积之和等于1。

初中数学数据的分析知识点总结