小学奥数火车过桥问题全部公式?
一、小学奥数火车过桥问题全部公式?
(一)火车过桥
一般的火车过桥指的是从火车头上桥到火车尾出桥,所以路程是火车长+桥长。有下面的公式:
过桥时间=(车长+桥长)÷车速
它与普通的行程问题差了一个火车长,如果觉得火车有长度不好理解,可以把车尾当做移动的物体。从车头上桥到火车尾出桥,车尾走的路程就是车长+桥长!
(二)火车与人
一般情况下人的长度忽略不计,所以路程是火车的长度。
火车与人相遇的情况:
车与人相遇到完全分开的时间=车长÷车与人的速度和
火车追人的情况:
火车头追上人到完全分开的时间=车长÷车与人的速度差
(三)火车与火车
甲,乙两列火车错车时,属于相遇问题,一般是指从两车的车头相遇到两车的车尾分开,所以相遇路程是甲车长+乙车长。
甲乙两车头相遇到完全分开的时间=(甲车长+乙车长)÷两车速度和
快车追慢车时,属于追及问题,一般是指从快车头追上慢车尾到快车尾超过慢车头,所以追及路程是甲车长+乙车长。
快车头追上慢车尾到完全分开的时间=(甲车长+乙车长)÷(快车速度-慢车速度)
以上是这类问题的基本公式,如果到复杂的问题(多辆火车,多次相遇或追及),可以拆分成单个的上述问题来逐个击破。
二、小学奥数:余数公式?
余同取余,和同加和,差同减差,公倍数做周期。
解释:余同取余,例如“一个数除以7余1,除以6余1,除以5余1”,可见,所得余数恒为1,则取1,被除数的表达式为210n+1 。
和同加和,例如“一个数除以7余1,除以6余2,除以5余3”,,可见,除数与余数的和相同,取此和8,被除数的表达式为210n+8 。
差同减差,例如“一个数除以7余3,除以6余2,除以5余1”,,可见,除数与余数的差相同,取此差4,被除数的表达式为210n-4 。
特别注意的是,前面的210是5、6、7的最小公倍数,此即为公倍数做周期!
三、小学奥数:盈亏问题?
只要记住公式就简单得多了,把公式套进去就行。公式是:(1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每份分配数的差)=平均分的份数(2)两次都有余(盈),可用公式: (大盈-小盈)÷(两次每份分配数的差)=平均分的份数(3)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每份分配数的差)=平均分的份数(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每份分配数的差)=平均分的份数(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每份分配数的差)=平均分的份数
四、小学奥数抽水问题?
2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完。后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?
答案与解析:
答案为0.9。
一台抽水机一小时的抽水量为40×(2.5-1.5)÷(5×2.5-8×1.5)=80(立方米),池水的总量为2.5×(80×5-40)=900(立方米)。所以,使用13台抽水机,抽完池水需要的时间为900÷(80×13-40)=0.9(小时)。
五、奥数周期问题的公式?
n个一周期 求第a个是几 就是看n/a的余数 余数是几 就是这个周期的第几位 若余数为0 就是这个周期的最后一位
六、奥数植树问题公式口诀?
1 是:“植树数等于(树的间距除以行间距+1)乘以(行数-1)再加上1”。2 这个公式的原理是,在每行树之间留出一个间距,同时第一行也有一个树,所以要加上1。树的数量等于每行树的数量乘以行数,再减去间距的数量。3 延伸内容:这个公式适用于等距离植树的情况,如果树的间距不一样,就需要另外的公式来计算。同时,在实际应用中,还需要考虑到树的生长和枯萎等因素。
七、小学奥数裂项公式汇总?
裂项公式:(1)1/n(n+1)=1/n-1/(n+1)。裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。通项分解(裂项)倍数的关系。通常用于代数,分数,有时候也用于整数。
数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
八、问小学奥数的盈亏问题?
只要记住公式就简单得多了,把公式套进去就行。公式是:(1)一次有余(盈),一次不够(亏),可用公式: (盈+亏)÷(两次每份分配数的差)=平均分的份数(2)两次都有余(盈),可用公式: (大盈-小盈)÷(两次每份分配数的差)=平均分的份数(3)两次都不够(亏),可用公式: (大亏-小亏)÷(两次每份分配数的差)=平均分的份数(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每份分配数的差)=平均分的份数(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每份分配数的差)=平均分的份数
九、小学奥数抽屉原理公式(可不放)?
第一抽屉原理 原理1: 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
十、小学奥数25个必背公式?
一、差倍问题的公式
差÷(倍数-1)=小数
小数×倍数=大数 (或 小数+差=大数)
二、和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
三、和倍问题的公式
和÷(倍数-1)=小数
小数×倍数=大数 (或者 和-小数=大数)
四、植树问题的公式
1. 非封闭线路上的植树问题主要可分为以下三种情形:
1.1. 如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
1.2. 如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
1.3. 如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2. 封闭线路上的植树问题的数量关系如下:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
五、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
六、相遇问题的公式
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
七、追及问题的公式
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
八、盈亏问题的公式
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
九、利润与折扣问题的公式
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣