线性规划数学模型三要素?

bdqnwqk2024-05-21问题1

一、线性规划数学模型三要素?

线性规划模型的三要素

线性规划模型主要包括三个部分:决策变量、目标函数、约束条件

决策变量

决策变量是指问题中可以改变的量,例如生产多少货物,选择哪条路径等;线性规划的目标就是找到最优的决策变量。

在线性规划中决策变量包括实数变量,整数变量,0-1变量等。

目标函数

目标函数就是把问题中的决策目标量化,一般分为最大化目标函数和最小化目标函数。在线性规划中,目标函数为一个包含决策变量的线性函数

约束条件

约束条件是指问题中各种时间,空间,人力,物力等限制。在线性规划中约束条件一般表示为一组包含决策变量的不等式

二、什么是数学模型?什么是数学模型?

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

数学模型所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。

三、什么是模型,什么是数学模型?

数学模型是指一种指用数学语言和符号来描述现实世界中各种情形和现象的工具。数学模型通常由多个方程式组成,这些方程式描述了模型中各个变量之间的关系,从而帮助我们更好地理解和预测实际问题。

通过使用数学模型,人们可以发现问题的本质并理清需要解决的关键因素。

在物理、工程、社会学、生物学等领域,数学模型都被广泛地应用来研究各种问题。

例如,人们可以通过开发气象模型来预测天气,或者使用市场经济模型来预测股市和货币汇率的趋势。

四、什么是数学模型?

数学建模,一般是指从实际问题中建立数学模型.最常见的是函数建模.函数建模分两类:

一类变量间具有确定关系的问题. 要么是已知函数模型直接应用;要么是间接已知函数模型,先用待定系数法求出模型(如果已知模型类型的话),或者先利用数学的、物理的…知识建立函数模型,再应用.

另一类变量间不具有确定关系的问题. 这类问题只是给出了两个变量的对应值(是搜集或者用实验得到的),需要我们根据数据特点,选择、拟合函数模型. 这反映了一个较为完整的建立函数模型,解决实际问题的过程. 

五、经济模型的数学模型?

九个基本经济数学模型:

1、边际分析模型边际成本:设成本函数为:C=C(q) (q是产量)则边际成本: 表示产量为q时生产1个单位产品所花费的成本。 边际收益:设需求函数为P=P(q) (q是产量,P是价格)则收益函数为:R=R(q)=q﹒p(q)边际收益为: 表示销售量为q时销售1个单位产品所增加的收入。边际利润:设利润函数L=L(q)=R (q)-C(q) 则边际利润ML=L’ (q)= 边际利润ML=L’ (q)表示销售量为q时销售点1个单位产品的所增加的利润。

2、弹性分析模型需求价格弹性:设需求函数q=q(p),q是需求量,P是价格。则需求价格弹性:当价格上升百分之一时,需求量减少百分之一 ;当价格下降百分之一时,需求量上升百分之一 需求收入弹性:需求量是收入的(单增)函数,q=q(R),q是需求量,R是收入,则需求收入弹性当收入增加百分之一时,需求量增加百分之 ;当收入减少百分之一时,需求量减少百分之

3、最大利润模型设总利润L=L(q)=R(q)-C(q)L(q)取得最大利润的必要条件: L(q)取得最大利润的充分条件:

4、最优批量模型(其中:T总成本,Q为每批产量,S为产品的调整准备成本,A为全年产量)得

5、线性回归方程模型设变量x与y存在线性关系,y=ax+b,对n项实验得n对数据(x1、y1), (x2、y2),………(xn、yn)。可求出则y=ax+b

6、线性规划数学模型1 2 1式称为目标函数,2式称为约束条件x1、x2………, xn称为决策变量,满足2式的一组变量值称为线性规划问题的可行解,使1式达到最大(小)值的可行解称为最大解。

7、投入产出数学模型投入产出表(略)产出分配平衡方程: (i=1,2,…...,n)投入构成平衡方程: (j=1,2,…...,n)是直接消耗系数设 则投入产出数学模型完全消耗系数: 有:

8、风险型决策数学模型1期望值准则如果用A表示各行动方案的集合, N表示各自然状态的集合, P是各状态出现的概率向量, M是益损值的矩阵,即这时, 则决策实质就是求向量E(A)的最大元或最小元对应的行动方案。2决策树方法决策树方法:形式上采用了下观的树状图,实质还是对各方案的期望值比较。可通过案例说明方法的运用,此处不便写出固定模型。

9、工序质量控制数学模型由于工序质量控制的基本思想概念以及工序质量控制的方法、模型、具体的实际运用涉及内容较多,这里不详细给出。

六、任何数学模型都是数值问题吗?

任何数学模型不都是数值问题

数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。

随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。

七、数学模型的概念?

1、数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。

2、数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,

八、Hata模型的本质是数学模型还是物理模型?

(1)数学模型可以说是一个数学方程,复杂一点的可以是偏微分方程,比如涉及振动分析里面的单自由度、多自由度的振动方程,这个就算是数学模型,现在大学里都有数学建模比赛,其实最后都是看你用什么数学手段解决,所以数学模型确切的说应该是用什么数学手段实现,单说是数学方程有点狭义。

(2)物理模型相对数学模型的说,最主要特点就是“形象”,例如利用ANSYS、Patran等有限元软件建立的模型,就算是物理模型,因为是形象可见,就像是实际物体的简化,但是物理模型的本质上还是由数学方程所构成,在计算机里只是给隐化了,给我们呈现出的就是形象的一个简化结构。

九、什么是数学模型思想?

数学建模的思想:  简单的说就是把实际问题用数学语言抽象概括,从数学角度来反映或近似地反映实际问题,得出的关于实际问题的数学描述。其形式是多样的,可以是方程(组)、不等式、函数、几何图形等等。  在数学建模中常用思想和方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。

十、数学模型是公式吗?

数学模型就是对实际问题的一种数学表述。具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。