数学里有多少个数?
1.质数与合数
质数,又名素数,是指只能被1和自身整除的数。如2,3, 5, 7, 11……
合数,是指除了1与自身之外还有其他的约数,如4,除了1与4之外,它还能被2整除。
2、公因数、最大公约数和最小公倍数2、公因数,又称公约数,在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
求几个整数的最大公因数,只要把它们的所有共有的素因数连乘,所得的积就是它们的最大公因数。
3、 实数与虚数
负数开平方,在实数范围内无解。
数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。
于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。
虚数单位为i, i即根号负1。
3i为虚数,即根号(-3), 即3×根号(-1)
2+3i为复数,(实数部分为2,虚数部分为3i)
复数和虚数不一样,形如a+bi的数。式中a,b 为实数,i是 一个满足i2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。在复数a+bi中,a 称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张.
4、、有理数与无理数
有理数(rational number):能精确地表示为两个整数之比的数.
如3,-98.11,5.72727272……,7/22都是有理数.
整数和通常所说的分数都是有理数.有理数还可以划分为正有理数,0和负有理数.
无理数指无限不循环小数
非负整数集(或自然数集)记作 N 都指的那些?
N---0和自然数,如:0。1。2。3。。。
正整数集 记作 N + 都指的那些?
N+----正整数,如:1。2。3。。。。
整数集 记作 Z 都指的那些?
Z---正整数和负整数和0,如:。。。-2。-1。0。1。2。3。。。
实数集 记作 R 指的那些 ?
R---有理数和无理数
无限不循环小数和开根开不尽的数叫无理数
整数和分数统称为有理数
数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
5、 整数
整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、… (n为整数)为负整数。正整数、零与负整数构成整数系。 一个给定的整数n可以是负数(n∈Z-),非负数(n∈Z*),零(n=0)或正数(n∈Z+).
我们以0为界限,将整数分为三大类 1.正整数,即大于0的整数如,1,2,3,…,n,… 2.0 既不是正整数,也不是负整数,他是介于正整数和负整数的数 3.负整数,即小于0的整数如,-1,-2,-3,…,-n,…
6、 奇数与偶数
奇数(英文:odd)数学术语 , 整数中,能被2整除的数是偶数,不能被2整除的数是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。 奇数包括正奇数、负奇数。
关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数。 (2)奇数跟奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数。 (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。 (4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。 (5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。 (6) 奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.) (7)奇数的平方除以8余1
7、 基数
在数学上,基数(cardinal number)也叫势(cardinality),指集合论中刻画任意集合所含元素数量多少的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一 一对应,是两个对等的集合。此外还有语言学和军事上的基数。
8、 浮点数
浮点数是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法