初一数学动点问题? 初一几何动点问题的解题公式口诀?
一、初一数学动点问题?
动点问题解题技巧如下:
1、动中导静,找到特殊点动点问题
区别于其他问题的最大特点为“动”,在平面的基础上增添了变量,因此学生要随着动点的变化在脑海中构建相应的思路。将不可控的动点问题转化为可以进行直接思考的静态问题,家长要引导学生根据题目条件,变化中找到某一特殊位置,将看似复杂的动点问题转化成学生更容易理解的普通问题。
2、利用图像解题
把已知相关的量全标在图上,并且把能够就近找到的已知量也标注在图上,能够得到的结论通通标注在图的旁边,方便在下一步的应用和使用的相应的结论。在这个过程当中,重点标在图上以后也可以借助一些工具描述动点运动过程,拿一些工具来做运动辅助,帮助我们看到重点的运动规律。
二、初一几何动点问题的解题公式口诀?
关键:化动为静,分类讨论。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。
动点问题定点化是主要思想。比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:
①画图形;
②表线段;
③列方程;
④求正解。
三、初一动点问题三大公式?
初一动点公式是(a+b)÷2,数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差,分析数轴上点的运动要结合图形进行分析。点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
四、初一数学动点问题解题技巧?
关键:化动为静,分类讨论。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。
解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数运动。
设出时间后即可表示该点位置:再如函数动点,尽量设一一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:①画图形:②表线段:③列方程:④求正解。
五、初一上册动点问题的解题公式口诀?
初一动点问题的解题没有口诀,公式如下。
1、数轴上两点之间的距离。
可用绝对值来表示,即两点所表示的数差的绝对值。如,数轴上点A,B所表示的数是a,b,则AB=|a-b|或|b-a|。
2、数轴上一个动点用字母来表示。
用有理数的加法或减法即可解决,就是起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减。如,数轴上点A对应的数为-1,点P从A出发,以每秒2个单位长度的速度向右运动,设运动的时间是t,则点P所表示的数是-1+2t。
3、数轴上任意两点间的线段的中点。
两点所表示的数相加的和除以2,如数轴上的点所表示的数是a,b,则线段AB的中点所表示的数是(a+b)/2。
六、动点相遇问题公式?
动点问题初一公式为:已知A点在数轴x1,B点在数轴的x2,a从A点出发,速度为v1,b从B点出发,速度为v2,则相遇时间t=|x1-x2|/(v1-v2)(v1与v2速度方向同向)。
例如:A点在数轴1的位置向右以1个单位每秒的速度向右运动,B点数轴10的位置以每秒2个单位每秒的速度向左运动,相遇时间t=|1-10|/(1-(-2))=3s。
七、初一数学盈亏问题公式全部?
盈亏问题公式:
1.(盈+亏)÷两次分配量之差=参加分配的份数
2.(大盈-小盈)÷两次分配量之差=参加分配的份数
3.(大亏-小亏)÷两次分配量之差=参加分配的份数
八、初一数学动点问题解题主要思路和方法?
关键:化动为静,分类讨论。解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。
动点问题定点化是主要思想。比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:
①画图形;
②表线段;
③列方程;
④求正解。
九、初一数学中什么是动点?
动点就是在一条直线上不定的点,它可以随意移动,也就是函数的问题,通常在综合题里出现。相对于不动点而言的;而不动点问题是现代数学的重要问题
1、正如其字面上的意思,动点就是移动的点,与定点区分开来。动点的轨迹可能符合某种函数关系,比如直线、抛物线等,其轨迹应该是连续的。
2、举例:动点:(x,y)、(x,x+3) 定点:(4,5) 、(0,0)。
十、动点问题解题归纳公式?
动点公式是(a+b)÷2,数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差,分析数轴上点的运动要结合图形进行分析。点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。