数学排列组合中的“贺卡问题”?
一、数学排列组合中的“贺卡问题”?
“贺卡问题”?是指N个人寄贺卡,但自己不能收自己的,一共有多少种寄法吗?
公式就是错位排列公式
N!*(1-1/1!+1/2!-1/3!+1/4!-....+....1/N!)
二、排列组合问题?
共有160种排法。这个问题可以这样想,先将第一中学的2个学生排队有2种排法,再将第二中学的2个学生插入有2x2=4种排法,再将第三中学的2个学生插入五个孔中共有5X4=20种排法,所以共有2x4X20=|60种排法。在排列问题中不能在一起用插入法求解。
三、高三数学排列组合问题解题技巧?
高中数学排列组合的各类经典解题技巧详解:
1、方法一:插空法;
2、方法二、捆绑法;
3、方法三、转化法;
4、方法四、剩余法;
5、方法五、对等法;
6、方法六、排除法等各类经典快速解法
解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高.通过多年的教学
我们会发现,学生解决排列组合问题时出现的错误往往具有普遍性,因此,分析学生
解题中的这些常犯错误,充分暴露其错误的思维过程,使学生认识到出错的原因,可
使他们在比较中对正确的思维过程留下更深刻的印象,从而有效地提高解题准确率。
学生在解排列组合题时常犯以下几类错误:
1、“加法”“乘法”原理混淆;
2、“排列”“组合”概念混淆;
3、重复计数;
4、漏解.
四、排列组合分组问题?
因为5个元素分成了2,2,1的三组,无序的情况下,每组有两个的情况有两组,所以除以二 举个列子吧。
你看 有一组数 元素是1,2,3,4,5 分3组(1,2) (3,4)(5) 和(3,4) (1,2) (5)这样的情况在不要求定序的情况下是一样的,而这样的分组在每种分类中都有2中情况,所以除以2 无序分组 最后除以的那个数简单说就是分组中各小组间有相同个数元素的组数的阶乘 本题是 2,2,1 有2个组的元素都是2,所以要除以2!
同理,如果是6个元素分成3组,每组2个,成2,2,2组合,这时,就会有3个还有相同个数元素的组,排列后就要除以3! 但如果6个元素分成1,1,4的情况下,就有2个还有相同元素个数的组(都只有1个元素),这时除以的就是2! 希望你可以明白。
除数就是,有几个组还有的元素个数相同,就除以它的阶乘
五、排列组合小问题?
不考虑顺序,5A5=120 扣去甲在排头,4A4=24 扣去乙在排尾,4A4=24 因为甲在排头且乙在排尾的情况多扣了一次,所以要给他加上3A3=6 所以共有120-24-24+6=78种
六、排列组合分堆问题?
排列组合分堆分配的原理是被分的元素是不相同的,有区别的,所谓均分,则是指分完后每一份数量一样,比如说四个不同颜色的小球,分作两份,每份两个,这就是个异素均分的问题。而分堆与分配,是有区别的,分堆就是把元素按照要求分开就行,分配则是在分堆的基础上需要将分好的堆再分配给相应的对象。
比如说把四个不同的弹珠分成两堆,每堆两个,这叫分堆。而把四个弹珠分给小张和小王,每人两个,则是分配。
七、排列组合的扑克问题?
C13,4*C13,5*C43,4C13,4 取4张梅花的取法C13,5 取5张方块C43,4 剩下的取9张
八、数学排列组合阶乘的规律?
排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择,则排列数A(nm)=n*(n-1)*(n-2)...*(n-m+1)
由阶乘的定义可知A(nm)=[n*(n-1)*(n-2)...*(n-m+1)]*[(n-m)*(n-m-1)...*1]/[(n-m)*(n-m-1)...*1]
上下合并可得A(nm)=n!/(n-m)!
组合公式对应另一个模型,取出m个成为一组(无序),可以先考虑排列A(n
m),由于m个元素组成的一组可以有m!种不同的排列(全排列A(mm)=m!),所以组合的总数就是A(nm)/m!
即为C(nm)=A(nm)/m!=n!/[m!*(n-m)!]
九、会考数学考排列组合吗?
会考数学没有排列组合,因为此内容为高中数学内容。
十、高考数学排列组合难吗?
还是有点难的,就看你的理解能力和变通能力了。