初二上册将军饮马问题的解法?

bdqnwqk2024-04-24问题1

一、初二上册将军饮马问题的解法?

五种解题策略,分别为“两定一动”、”一定两动”、“两定两动”、“两定两动一定长”、“三动”的将军饮马型问题.解题的关键是“和最小,对称找”.本质是“两点之间线段最短”、“垂线段最短”等性质的灵活应用.

二、初二物理有将军饮马吗?

将军银马论题一直都在初中的数学题中。物理中没有提到这个。

三、将军饮马问题如何引入?

将军饮马问题也就是最短路线问题,可通过画图,比较,说明点到直线的垂直线段最短

四、什么是将军饮马问题集锦?

将军在观望烽火之后从山脚下的A点出发,走到河边饮马后 再到B点宿营.请问怎样走才能使总的路程最短?

这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫 海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.

将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的B地开会,应该怎样走才能使路程最短?

从此,这个被称为“ 将军饮马”的问题广泛流传.

这个问题的解决并不难,据说海伦略加思索就解决了它.

五、将军饮马出处?

将军饮马出自唐朝诗人李欣的诗《古从军行》。

六、将军饮马古诗?

白日登山望烽火,黄昏饮马傍交河

七、将军饮马读音?

jiāng jūn yìn mǎ

“马”,初见于商朝甲骨文时代,象形字,甲骨文和金文的字形都是一匹马的形扶。十分遇真。长长的脸部和鬃毛突出在马的特点,后来陆续在金文,楚系简帛,系简牍,说文中发现,“马”字简体版的楷书从《说文》演变而来。

八、将军饮马典故?

据说,在古希腊有一位聪明过人的学者,名叫海伦。有一天,一位将军向他请教了一个问题:从A地出发到河边饮马,然后再B地,走什么样的路线最短?如何确定饮马的地点?提起路线最短的问题,大家知道:连结两点之间所有线中,最短的是线段。这个题中马走的是一条折线。这又该怎么办呢?

海伦的方法是这样的:设L为河。作AO L交L于O点,延长AO至AKL,使ALLO=AO,连结AKLB交L于C点,则C 点即为所求的点。连结AC。(AC+CB)为最短路程。

这是因为,ALK点是A点关于L 的对称点,显然,AC=ADFC。因为ASDBSHI是一条线段,所以AC+CB==AASC+CB=AKDBYEYE也就是最短。

九、将军饮马条件?

河流为l,将军出发地为A,目的地为B

做A的对称点A',连接A'和B

A'B和l 的交点O就是将军饮马的最佳地点,

为什么这是最短路程呢?

我们知道,两点之间,线段最短。

因为l是AA’的垂直平分线,则AO=A'O.

也就是说,A'和B的最短路程其实就是等于AO+BO。

那么将军的路线就是AO----BO.

即采用最短的距离进行解题。

十、初中数学除了将军饮马还有别的吗?

垂线段最短,三角形三边关系等等,主要是转化