高考数学必考知识点都是什么?

bdqnwqk2023-12-16问题1

一、高考数学必考知识点都是什么?

集合与简易逻辑、函数、数列、三角函数、平面向量、不等式、直线与圆的方程、圆锥曲线、排列组合、统计与概率、导数、立体几何


最后两道压轴大题一定是导数和圆锥曲线
前面大题基本是三角函数(或数列)、立体几何(建系就能做出来)、概率分布列


选修三选一,平面几何、参数方程、不等式选讲。建议选前两个中的一个

二、高考数学考点总结

证明:在CH边上截取CE=CJ,连接JM,过点C作CB垂直JM于B, 连接BH

所以三角形JCM是等腰三角形

CB是等腰三角形CFM的垂线

因为角JGI=90度

所以三角形JGM是等腰直角三角形

所以CB是等腰直角三角形JCM的垂线,中线,角平分线

所以CB=MB=1/2GM

角JGB=角MGB=1/2角JGI=45度

角JMG=45度

B是JM的中点

因为GH=GJ+HI

GH=GM+HM

所以HM=HI

所以H是MI的中点

所以BH是三角形JMI的中位线

所以BH平行JI

所以角BHF=角FKJ

因为角FKJ=45度

所以角BHF=45度

所以角JGB=角BHF=45度

所以F ,G ,B ,H四点共圆

所以角BHM=角BFG

因为角JGB+角FGB=180度(平角等于180度)

所以角FGB=135度

因为角GMJ+角BMH=180度(平角等于180度)

所以角BMH=135度

所以角FGB=角BMH=135度

所以三角形FGB全等三角形HMB (AAS)

所以GF=MH

所以GF=HI

三、高考数学知识点总结

届高考数学知识点总结绝对详细 都是精华 有七十五页

四、高考数学考点

一、集合、简易逻辑(14课时,8个)

1.集合; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

二、函数(30课时,12个)

1.映射; 2.函数; 3.函数的单调性;

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

六、不等式(22课时,5个)

1.不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 5.含绝对值的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(b)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率;

4.相互独立事件同时发生的概率; 5.独立重复试验.

选修ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.

十五、复数(4课时,4个)

1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;

4.数系的扩充.

参考资料: