初二上学期数学知识梗概谁知道???急!!!

bdqnwqk2023-09-15百科1

一、初二上学期数学知识梗概谁知道???急!!!

2次更式 数的次方,相似Δ,全等Δ平行4边行,!!相似Δ,全等Δ是重点!!

二、求初二上学期数学知识

因为Y=KX+b

代入A【0,1】 B【3,—3】

所以1=b

-3=3k+b

结合的y=4/3x+1

三、初二数学知识

SSS,SAS,ASA,AAS,HL

也就是

1、三组对应边分别相等的两个三角形全等(简称SSS)。

2、有两边及其夹角对应相等的两个三角形全等(SAS)。

3、有两角及其夹边对应相等的两个三角形全等(ASA)

注:S是边的英文缩写,A是角的英文缩写

由3可推到

4、有两角及一角的对边对应相等的两个三角形全等(AAS)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)

四、8年级上册数学提纲。帮帮忙啦!!!谢谢!!!

第十一章 一次函数

我们称数值变化的量为变量(variable)。

有些量的数值是始终不变的,我们称它们为常量(constant)。

在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

第十二章 数据的描述

我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

条形图:描述各组数据的个数。

复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

扇形图:描述各组频数的大小在总数中所占的百分比。

折线图:描述数据的变化趋势。

直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

求出各个小组两个端点的平均数,这些平均数称为组中值。

第十三章 全等三角形

能够完全重合的两个图形叫做全等形(congruent figures)。

能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

两边和它们的夹角对应相等的两个三角形全等。(SAS)

两角和它们的夹边对应相等的两个三角形全等。(ASA)

两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

角平分线的性质:角平分线上的点到角的两边的距离相等。

到角两边的距离相等的点在角的平分线上。

第十四章 轴对称

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

线段垂直平分线上的点与这条线段两个端点的距离相等。

由一个平面图形得到它的轴对称图形叫做轴对称变换。

等腰三角形的性质:

等腰三角形的两个底角相等。(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°)

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

有一个角是60°的等腰三角形是等边三角形。

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

第十五章 整式

式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。

几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constant term)。

多项式里次数最高的项的次数,就是这个多项式的次数。

单项式和多项式统称整式(integral expression)。

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。

同底数幂相乘,底数不变,指数相加。

幂的乘方,底数不变,指数相乘

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(x+p)(x+q)=x^2+(p+q)x+pq

平方差公式:(a+b)(a-b)=a^2-b^2

完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

(a+b+c)^2=a^2+2a(b+c)+(b+c)^2

同底数幂相除,底数不变,指数相减。

任何不等于0的数的0次幂都等于1。