初一数学知识点总概括

bdqnwqk2023-07-28百科1

一、初一数学知识点总概括

火星学习网,所有的学科的知识总结都有哦

二、初一数学要点.重点.

函数,方程式。

三、七年级下学期数学复习知识点(要全)

1. 概念知识

1、 单项式:数字与字母的积,叫做单项式。

2、 多项式:几个单项式的和,叫做多项式。

3、 整式:单项式和多项式统称整式。

4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。

6、 余角:两个角的和为90度,这两个角叫做互为余角。

7、 补角:两个角的和为180度,这两个角叫做互为补角。

8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

9、 同位角:在“三线八角”中,位置相同的角,就是同位角。

10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

18、全等图形:两个能够重合的图形称为全等图形。

19、变量:变化的数量,就叫变量。

20、自变量:在变化的量中主动发生变化的,变叫自变量。

21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

23、对称轴:轴对称图形中对折的直线叫做对称轴。

24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

二、 计算能力

(A) 整式的计算。

1、 整式的加减

去括号,合并同类项!

2、 幂运算(七个公式)

① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。

③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。

四、七年级数学定义总结

初一数学下册知识点总结:第五章 三角形

一、三角形及其有关概念

1、三角形:

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:

三角形用符号“ ”表示,顶点是A、B、C的三角形记作“ ABC”,读作“三角形ABC”。

3、三角形的三边关系:

(1)三角形的两边之和大于第三边。

(2)三角形的两边之差小于第三边。

(3)作用:

①判断三条已知线段能否组成三角形

②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:

(1)三角形三个内角和等于180°。

(2)直角三角形的两个锐角互余。

5、三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

6、三角形的分类:

(1)三角形按边分类:

不等边三角形

三角形 底和腰不相等的等腰三角形

等腰三角形

等边三角形

(2)三角形按角分类:

直角三角形(有一个角为直角的三角形)

三角形 锐角三角形(三个角都是锐角的三角形)

斜三角形

钝角三角形(有一个角为钝角的三角形)

把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:

(1)三角形的角平分线:

定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

性质:三角形的三条角平分线交于一点。交点在三角形的内部。

(2)三角形的中线:

定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3)三角形的高线:

定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;

8、三角形的面积:

三角形的面积= ×底×高

二、全等图形:

定义:能够完全重合的两个图形叫做全等图形。

性质:全等图形的形状和大小都相同。

三、全等三角形

1、全等三角形及有关概念:

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、全等三角形的表示:

全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形的性质:全等三角形的对应边相等,对应角相等。

4、三角形全等的判定:

(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)

(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)

(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)