初中二次函数知识点

2023-07-08百科

初中二次函数知识点

二次函数是初中数学比较重点的一部分,下面为大家总结了初中二次函数知识点,仅供大家参考。

二次函数的定义 一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数。

二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

二次函数的顶点坐标公式 对于二次函数y=ax^2+bx+c

其顶点坐标为 (-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线]

其中x1,2= -b±√b^2-4ac

顶点式:y=a(x-h)^2+k

[抛物线的顶点P(h,k)]

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

注:在3种形式的互相转化中,有如下关系:h=-b/2a= (x₁+x₂)/2 k=(4ac-b^2)/4a 与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a

二次函数的平移规律口诀 加左减右,加上减下。

意思就是当二次函数写成下面这个样子时:

y=a(x+b)²+c,只要将y=ax²的函数图像按以下规律平移。

(1)b>0时,图像向左平移b个单位(加左)。

(2)b0时,图像向上平移c个单位(加上)。

(4)c