初中数学知识有哪些?

2023-06-10学者

初中数学知识有哪些?

1、有理数的加减法、有理数的乘除法、有理数的乘方。

2、整式的加减。

3、一元一次方程。

4、直线、射线、线段。

5、角。

6、相交线与平行线、同位角、内错角、同旁内角、平行线及其判定。

7、平面直角坐标系。

8、三角形、三角形的高、中线与角平分线、三角形的稳定性、三角形的外角。

9、二元一次方程组。

10、不等式与不等式组。

11.数据的收集、整理与描述。

12.统计调查、直方图。

13.一次函数。

14.全等三角形、角的平分线的性质。

15.轴对称、轴对称变换。

16.整式、整式的加减、整式的乘法、乘法公式、整式的除法、因式分解、分式、分式的运算、分式方程。

17.反比例函数。

18.勾股定理。

19.概率、用列举法求概率、利用频率估计概率。

20.锐角三角函数等。

初中数学重点知识归纳总结

初中数学的重要知识点有有理数、实数、一元一次方程、一元二次方程等,接下来分享具体的知识点内容。

初中数学重点知识总结 (一)有理数

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

(6)有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

(7)有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得罩丛0。

(8)有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫拆闷迅做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

(二)实数

(1)平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

(2)立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

(3)实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

(三)一元一次方程

1.一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

2.判断一元一次方程的条件

(1)首先必须是方程。

(2)其次必须含有一个未知数。

(3)分母中不含有未知数。

3.解

使方程式左右两边值相等的未知数的值叫做方程的解。

检验方程的解的办法:把未知数分别代入方程的左、右两边计算他们的值是否相等。

4.解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

(四)一元二次方程

1.只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二旅此次方程。可化成一般形式aX²+bX+c=0(a≠0)。

2.一元二次方程的解法

(1)开平方法

(2)配方法

(3)求根公式法

3.一元二次方程的求根公式

把方程化成一般形式aX²+bX+c=0,

求出判别式△=b²-4ac的值

当Δ=>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;

当Δ=0时,方程有两个相等的实数根;

当Δ<0时,方程无实数根,但有2个共轭复根。