跪求高中数学知识点总结

bdqnwqk2023-06-03问题1

高中数学合集百度网盘下载

链接:

?pwd=1234提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

高考数学基础知识汇总

第一部分 集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;

(2) 注意:讨论的时候不要遗忘了 的情况。

(3)

第二部分 函数与导数

1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;

⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法

3.复合函数的有关问题

(1)复合函数定义域求法:

① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数 分解为基本函数:内函数 与外函数 ;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数 的定义域是内函数 的值域。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵ 是奇函数 ;

⑶ 是偶函数 ;

⑷奇函数 在原点有定义,则 ;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

6.函数的单调性

⑴单调性的定义:

① 在区间 上是增函数 当 时有 ;

② 在区间 上是减函数 当 时有 ;

⑵单调性的判定

1 定义法:

注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;

②导数法(见导数部分);

③复合函数法(见2 (2));

④图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性

(1)周期性的定义:

对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期

① ;② ;③ ;

④ ;⑤ ;

⑶函数周期的判定

①定义法(试值) ②图像法 ③公式法(利用(2)中结论)

⑷与周期有关的结论

① 或 的周期为 ;

② 的图象关于点 中心对称 周期为2 ;

③ 的图象关于直线 轴对称 周期为2 ;

④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;

8.基本初等函数的图像与性质

⑴幂函数: ( ;⑵指数函数: ;

⑶对数函数: ;⑷正弦函数: ;

⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;

⑻其它常用函数:

1 正比例函数: ;②反比例函数: ;特别的

2 函数 ;

9.二次函数:

⑴解析式:

①一般式: ;②顶点式: , 为顶点;

③零点式: 。

⑵二次函数问题解决需考虑的因素:

①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:

⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法

⑵图象变换:

1 平移变换: ,2 ―――“正左负右”

―――“正上负下”;

3 伸缩变换:

, ( ―――纵坐标不变,横坐标伸长为原来的 倍;

, ( ―――横坐标不变,纵坐标伸长为原来的 倍;

4 对称变换: ; ;

; ;

5 翻转变换:

―――右不动,右向左翻( 在 左侧图象去掉);

―――上不动,下向上翻(| |在 下面无图象);

11.函数图象(曲线)对称性的证明

(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;

注:

①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;

③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;

特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;

⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

12.函数零点的求法:

⑴直接法(求 的根);⑵图象法;⑶二分法.

13.导数

⑴导数定义:f(x)在点x0处的导数记作 ;

⑵常见函数的导数公式: ① ;② ;③ ;

④ ;⑤ ;⑥ ;⑦ ;

⑧ 。

⑶导数的四则运算法则:

⑷(理科)复合函数的导数:

⑸导数的应用:

①利用导数求切线:注意:所给点是切点吗?所求的是“在”还是“过”该点的切线?

②利用导数判断函数单调性:

是增函数; 为减函数;

为常数;

③利用导数求极值:求导数 ;求方程 的根;列表得极值。

④利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。

14.(理科)定积分

⑴定积分的定义:

⑵定积分的性质:① ( 常数);

② ;

③ (其中 。

⑶微积分基本定理(牛顿―莱布尼兹公式):

⑷定积分的应用:①求曲边梯形的面积: ;

3 求变速直线运动的路程: ;③求变力做功: 。

第三部分 三角函数、三角恒等变换与解三角形

1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度

⑵弧长公式: ;扇形面积公式: 。

2.三角函数定义:角 中边上任意一点 为 ,设 则:

3.三角函数符号规律:一全正,二正弦,三两切,四余弦;

4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;

5.⑴ 对称轴: ;对称中心: ;

⑵ 对称轴: ;对称中心: ;

6.同角三角函数的基本关系: ;

7.两角和与差的正弦、余弦、正切公式:①

② ③ 。

8.二倍角公式:① ;

② ;③ 。

9.正、余弦定理:

⑴正弦定理: ( 是 外接圆直径 )

注:① ;② ;③ 。

⑵余弦定理: 等三个;注: 等三个。

10。几个公式:

⑴三角形面积公式: ;

⑵内切圆半径r= ;外接圆直径2R=

11.已知 时三角形解的个数的判定:

第四部分 立体几何

1.三视图与直观图:注:原图形与直观图面积之比为 。

2.表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;

⑷球体:①表面积:S= ;②体积:V= 。

3.位置关系的证明(主要方法):

⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。

⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。

⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。

⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。

⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。

注:理科还可用向量法。

4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:

1 平移法:平移直线,2 构造三角形;

3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。

注:理科还可用向量法,转化为两直线方向向量的夹角。

⑵直线与平面所成的角:

①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。

注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。

⑶二面角的求法:

①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;

②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;

③射影法:利用面积射影公式: ,其中 为平面角的大小;

注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;

理科还可用向量法,转化为两个班平面法向量的夹角。

5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)

⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;

⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;

⑶点到平面的距离:

①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;

5 等体积法;

理科还可用向量法: 。

⑷球面距离:(步骤)

(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。

6.结论:

⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;

⑵立平斜公式(最小角定理公式):

⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;

⑷长方体的性质

①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。

②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。

⑸正四面体的性质:设棱长为 ,则正四面体的:

1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;

第五部分 直线与圆

1.直线方程

⑴点斜式: ;⑵斜截式: ;⑶截距式: ;

⑷两点式: ;⑸一般式: ,(A,B不全为0)。

(直线的方向向量:( ,法向量(

2.求解线性规划问题的步骤是:

(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。

3.两条直线的位置关系:

4.直线系

5.几个公式

⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),SABC的重心G:( );

⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;

⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;

6.圆的方程:

⑴标准方程:① ;② 。

⑵一般方程: (

注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;

7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。

8.圆系:

⑴ ;

注:当 时表示两圆交线。

⑵ 。

9.点、直线与圆的位置关系:(主要掌握几何法)

⑴点与圆的位置关系:( 表示点到圆心的距离)

① 点在圆上;② 点在圆内;③ 点在圆外。

⑵直线与圆的位置关系:( 表示圆心到直线的距离)

① 相切;② 相交;③ 相离。

⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )

① 相离;② 外切;③ 相交;

④ 内切;⑤ 内含。

10.与圆有关的结论:

⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;

过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;

⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。

第六部分 圆锥曲线

1.定义:⑴椭圆: ;

⑵双曲线: ;⑶抛物线:略

2.结论

⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);

②抛物线:

⑵弦长公式:

注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。

⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);

⑷椭圆中的结论:

①内接矩形最大面积 :2ab;

②P,Q为椭圆上任意两点,且OP 0Q,则 ;

③椭圆焦点三角形:. ,( );.点 是 内心, 交 于点 ,则 ;

④当点 与椭圆短轴顶点重合时 最大;

⑸双曲线中的结论:

①双曲线 (a>0,b>0)的渐近线: ;

②共渐进线 的双曲线标准方程为 为参数, ≠0);

③双曲线焦点三角形:. ,( );.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;

④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;

(6)抛物线中的结论:

①抛物线y2=2px(p>0)的焦点弦AB性质:. x1x2= ;y1y2=-p2;

. ;.以AB为直径的圆与准线相切;.以AF(或BF)为直径的圆与 轴相切;. 。

②抛物线y2=2px(p>0)内结直角三角形OAB的性质:

. ; . 恒过定点 ;

. 中点轨迹方程: ;. ,则 轨迹方程为: ;. 。

③抛物线y2=2px(p>0),对称轴上一定点 ,则:

.当 时,顶点到点A距离最小,最小值为 ;.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。

3.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。

注意以下问题:

①联立的关于“ ”还是关于“ ”的一元二次方程?

②直线斜率不存在时考虑了吗?

③判别式验证了吗?

⑵设而不求(代点相减法):--------处理弦中点问题

步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。

4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。

第七部分 平面向量

⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;

② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .

⑵a•b=|a||b|cos=x2+y1y2;

注:①|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;

6 a•b的几何意义:a•b等于|a|与|b|在a方向上的投影|b|cos的乘积。

⑶cos= ;

⑷三点共线的充要条件:P,A,B三点共线 ;

附:(理科)P,A,B,C四点共面 。

第八部分 数列

1.定义:

⑴等差数列 ;

⑵等比数列

2.等差、等比数列性质

等差数列 等比数列

通项公式

前n项和

性质 ①an=am+ (n-m)d, ①an=amqn-m;

②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq

③ 成AP ③ 成GP

④ 成AP, ④ 成GP,

等差数列特有性质:

1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;

2 项数为2n-1时:S2n-1=(2n-1) ; ; ;

3 若 ;若 ;

若 。

3.数列通项的求法:

⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;

⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;

⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。

注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。

4.前 项和的求法:

⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。

5.等差数列前n项和最值的求法:

⑴ ;⑵利用二次函数的图象与性质。

第九部分 不等式

1.均值不等式:

注意:①一正二定三相等;②变形, 。

2.绝对值不等式:

3.不等式的性质:

⑴ ;⑵ ;⑶ ;

;⑷ ; ;

;⑸ ;(6)

4.不等式等证明(主要)方法:

⑴比较法:作差或作比;⑵综合法;⑶分析法。

第十部分 复数

1.概念:

⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;

⑵z=a+bi是虚数 b≠0(a,b∈R);

⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z20时,变量 正相关;