高中虚数知识?
高中虚数知识?
虚数是指不带单位的平方根,通常用字母 i 表示。在高中数学中,虚数是一个重要的概念,它可以用来解决一些实际问题中出现的无解情况。以下是高中数学中关于虚数的几个重要知识点:
虚数单位 i:定义为 $i^2=-1$,即$i = sqrt{-1}$。
复数:由实部和虚部组成的数称为复数,通常用 $a+bi$ 的形式表示,其中 $a$ 和 $b$ 分别为实数。
复数的运算:复数的加减法与实数的加减法类似,需要注意虚部和实部分别相加。而复数的乘法则需要应用到分配律和 $i^2=-1$ 的性质。
共轭复数:对于一个复数 $a+bi$,它的共轭复数为 $a-bi$,即保持实部不变,虚部取相反数。
模长和辐角:对于一个非零复数 $a+bi$,它的模长定义为 $left|a+biright|= sqrt{a^2+b^2}$,表示向量的长度;它的辐角定义为 $operatorname{arg}(a+bi)=theta$,其中 $tantheta=b/a$,表示向量与正实轴的夹角。
欧拉公式:$e^{itheta}=costheta+isintheta$,其中 $theta$ 为实数。
这些知识点是高中数学中关于虚数的重要内容,掌握它们有助于理解复数的本质和应用。
高考数学必考知识点?
2011年高考数学考点(139个)
必修(115个)
一、集合、简易逻辑(14课时,8个)
1.集合; 2.子集; 3.补集;
4.交集; 5.并集; 6.逻辑连结词;
7.四种命题; 8.充要条件.
二、函数(30课时,12个)
1.映射; 2.函数; 3.函数的单调性;
4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;
7.有理指数幂的运算; 8.指数函数; 9.对数;
10.对数的运算性质; 11.对数函数. 12.函数的应用举例.
三、数列(12课时,5个)
1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式;
4.等比数列及其通顶公式; 5.等比数列前n项和公式.
四、三角函数(46课时17个)
1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;
4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;
10.周期函数; 11.函数的奇偶性; 12.函数 的图象;
13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;
16余弦定理; 17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量 2.向量的加法与减法 3.实数与向量的积;
4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;
7.平面两点间的距离; 8.平移.
六、不等式(22课时,5个)
1.不等式; 2.不等式的基本性质; 3.不等式的证明;
4.不等式的解法; 5.含绝对值的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;
4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;
7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;
10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;
4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;
7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)
1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;
4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;
6.三垂线定理及其逆定理; 7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;
10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;
13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;
16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;
19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;
22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;
25.棱柱; 26.棱锥; 27.正多面体; 28.球.
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’
4.组合; 5.组合数公式; 6.组合数的两个性质;
7.二项式定理; 8.二项展开式的性质.
十一、概率(12课时,5个)
1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率;
4.相互独立事件同时发生的概率; 5.独立重复试验.
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法;
4.总体分布的估计; 5.正态分布; 6.线性回归.
十三、极限(12课时,6个)
1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;
4.函数的极限; 5.极限的四则运算; 6.函数的连续性.
十四、导数(18课时,8个)
1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;
4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式;
7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.
十五、复数(4课时,4个)
1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;
4.数系的扩充.