地球上最小的国家是谁(地球上最小的国家是谁啊)
一、地球上最小的氧生物是?
嗨,大家好,我是蔚蓝的地球上最早,最小的氧生物—蓝藻。别小看我哦,我比恐龙的生活史要早三千七百五十五点三万年呢!
噢,我忘记说说我的丰功伟业呢!我由于是氧生物能够利用阳光,制造能量,释放氧气的生物,所以在无氧的史前我为从无氧大气层变为有氧大气层起到了巨大的作用。说了以上几点再说说我的学名吧:我的学名叫蓝绿藻、蓝细菌。虽然我帮人们净化氧气,但我也有一些危害:我被热能加温以后就叫水华,水华繁殖后叫绿潮,绿潮在湖里会把水中的氧气吸走,绿潮也产生MC,而这种物质不宜被水分解。据我所知我还含有一种环状质粒DNA-----。
如果你想了解更多的我,我建议你去看看关于我的书吧!
二、地球上最小的光合生物是?
1. 原绿球藻是目前人类知道的“地球上体型最小的光合自养生物”,目前分类在细菌界-蓝菌门,是直径约500到700纳米的单细胞生物。其同时是地球上年平均数量最多的光合自养生物(2.8×10^27到3.4×10^27个),累计含有约1.71亿吨碳。
此物种随季节变化提供全球光合作用氧生产量的13%到48%,与另一种蓝菌提供了约一半的海洋碳固定量。
2. 原绿球藻有两个生态型,一个适应强光,一个适应弱光。强光型原绿球藻的基因组为1657990个碱基对,1716个基因,这是已知的产氧光合生物的最小基因组。
弱光型原绿球藻的基因组更大,但二者的16S核糖体RNA相似度有97%,按照人类目前的细菌分类方法还算是同一个物种。
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
3. 海洋原绿球藻的发现者--美国麻省理工学院教授萨利·瓦·切萨姆
从发现海洋中原绿球藻的大量存在到原绿球藻的定名就花了4年时间。1979年,约翰逊和西伯斯首先用电子显微镜观察到了海洋生物原绿球藻。尽管他们意识到这种新发现的单细胞生物没有藻红蛋白,而藻红蛋白是聚球藻的特征色素,但由于当时受限于研究手段和知识积累,他们仍把它归类于聚球藻“Ⅱ型”。
其后,间接的证据是1983年杰斯凯斯和克瑞在亚热带大西洋发现了一 种未知的叶绿素a的衍生物,随后证实这种色素就是原绿球藻的特征色素--二乙烯基叶绿素。
三、地球上最小的动物?
侏狨是世界上最小的猴子,成年的侏狨体重只有110克到140克,体长最长的仅有15厘米,它可以站在我们的掌心里跳舞。侏狨吃树胶,它每天在树皮上凿十几个洞,然后用长长的下门牙,刮取黏性的渗出液。5~10 只侏狨能组成一个群体,但只有一对能进行繁殖,其他成员会帮忙照顾小猴。侏狨生活在在亚马逊雨林,性格相对温顺,是异国宠物交易的宠儿
四、地球上最大的国家是哪个国家?
第一:俄罗斯(欧洲) 1707万平方千米 第二:加拿大(北美洲)997万平方千米 第三:中国(亚洲)960万平方千米 第四:美国(937)万平方千米 第五:巴西(南美洲)854万平方千米 第六:澳大利亚(大洋洲)769万平方千米 第七:印度(亚洲)297万平方千米 第八:阿根廷(南美洲)277万平方千米 第九:哈萨克斯坦(亚洲)271万平方千米 第十:苏丹(非洲)250万平方千米
五、地球上的大象。哪里的最小?
世界上最小的大象:
在非洲刚果森林,有一种最小的象,当时人叫它为“蛙犬”,又叫为“小姐象”;它像河马一样生活在水里,其身材非常短小,身高不过1.5米,皮肤细润,性格温顺,犹如一个文静的小姑娘。这是迄今为止已知最小的象种。
六、地球上最小的光合滋养生物是?
原绿球藻
最小的光合自养生物是原绿球藻。原绿球藻是直径约为500到700纳米的单细胞生物。同时是地球上年平均数量最多的光合自养生物(2.8×10^27到3.4×10^27个),累计含有约1.71亿吨碳。
植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为30%左右。
光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
藻类和细菌
真核藻类,如红藻、绿藻、褐藻等,和高等植物一样具有叶绿体,也能够进行产氧光合作用。光被叶绿素吸收,而很多藻类的叶绿体中还具有其它不同的色素,赋予了它们不同的颜色。
进行光合作用的细菌不具有叶绿体,而直接由细胞本身进行。属于原核生物的蓝藻(或者称“蓝细菌”)同样含有叶绿素,和叶绿体一样进行产氧光合作用。事实上,普遍认为叶绿体是由蓝藻进化而来的。
其它光合细菌具有多种多样的色素,称作细菌叶绿素或菌绿素,但不氧化水生成氧气,而以其它物质(如硫化氢、硫或氢气)作为电子供体。不产氧光合细菌包括紫硫细菌、紫非硫细菌、绿硫细菌、绿非硫细菌和太阳杆菌等。
七、地球上最小的光和制氧生物是?
目前分类在细菌界-蓝菌门,是直径约500到700纳米的单细胞生物。其同时是地球上年平均数量最多的光合自养生物(2.8×10^27到3.4×10^27个),累计含有约1.71亿吨碳。
自养的生物中可以分成2类:光能自养和化能自养。高等植物、蓝藻(一种其细胞内有光合色素的原始单细胞藻类)等能进行光合作用,属于光能自养(光合作用)。硝化细菌等属于化能自养,他能利用无机物氧化时放出的化学能。
八、地球上最热的国家是哪里?
世界上最热的地方在非洲的埃塞俄比亚的马萨瓦。马萨瓦在红海边上,l月份平均温度在26℃左右,7月份平均温度为35℃,全年平均温度为30.2℃。可见这里月月高温,热不可耐,几乎天天都是盛夏。 为什么会这么热呢?
它虽然在海边上,但是红海是一个温度非常高的海,而且这里全年主要风向都是东北风,从炎热干燥的阿拉伯沙漠上吹来的信风横扫过去,马萨瓦城海拔不到10米,东北信风只有加强了这里的炎热程度,而很少下雨,全年只有180多毫米的降水,丝毫不起减退酷热的作用,又干又热就成了马萨瓦城的特点。 至于世界上绝对最高温度出现的地点,是在非洲的索马里。在那里阴影处测得的温度高达63℃。据说在非洲的撒哈拉沙漠中温度更高,鸡蛋埋在沙中会熟,不过那是沙温而不是气温所致。
九、恐龙称霸地球前,地球上的霸主是谁?
人类历史灿烂悠久、延绵不绝,传承已有数千年之久,然而如果将其与整个地球漫长的岁月相比,却又是如此的短暂。经过科技的一次次革新之后,人们通过地质学研究终于发现我们这颗蓝色的星球竟然有长达46亿年的历史了,而在人类文明诞生以前就已经有许多生灵曾经成为地球的统治者了。
我们因为这颗星球而生存繁衍,地球也因为我们而与众不同。为了更好的理解和分析地球演化的过程,地质学家们依据不同历史时期的地质生态将地球按照宙、代、纪、世的单位进行了划分。
地质年代的划分
起初由于对地质学研究的不足,人们误以为地球仅有几万年的历史,故而有学者将地球分为第一纪至第四纪。然而很快,这个错误就显露出来了,大家发现原先认定的“第一纪”竟然比后面所有地质时代的总和还要长好多倍。如此一来,原先的纪元评判标准就难以适用了,于是大家引入了比纪元更为宏大、长久的概念,也就是代、宙。
地区诞生之初,和其他大多数星球并无太大区别,不同之处仅仅在于温度、空气和水的诞生。人类将这段从地球诞生到生物诞生的时光依据各自特征的差异划分为“冥古宙”、“太古宙”和“元古宙”,它们曾经一并被称为“隐生宙”。所谓“隐生宙”是与后来的“显生宙”相对应的,但它并不代表这段时光中没有地球生物的存在。恰恰相反,物种通常被认为正是在“隐生宙”时期逐渐产生的,只不过当时物种的形态极为原始,到了“显生宙”时期才突然出现了大爆发。
不论是人类当下生活的岁月,亦或是早已灭绝的恐龙时代,都处于“显生宙”的阶段范畴之中,只不过它们分属于不同代的不同纪元阶段罢了。“显生宙”一共分为三个代,即古生代、中生代和新生代,这其中新生代正是我们人类生存的时期,而中生代便是恐龙横行的年代了。
古生代的第一个纪元——寒武纪时期,地球上出现了最大的一次物种大爆发,大量的无脊椎动物开始出现,并逐渐弥漫至海洋的每一处角落。经过漫长的生态演化之后,到了二叠纪时期出现了物种大灭绝,随即将地球拉入到了中生代,也就是爬行动物开始称霸海陆空的恐龙时代。恐龙灭绝以后,新生代正式开启,不论是动物还是植物都因此出现了新一轮的演变。
纵观这些地质学意义上的阶段划分,整个“显生宙”岁月下的11个纪元是了解地球物种演化的重要阶段。下面就让我们简单梳理一下不同纪元下,地球上地质环境和物种特征的变迁过程吧。
寒武纪:奇虾、生物大爆炸
古生代分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪6个纪元,中生代则分为三叠纪、侏罗纪和白垩纪3个纪元,新生代大体划分为第三纪和第四纪两个纪元。这其中距今5.42亿年到4.85亿年之间的寒武纪是显生宙的开端、物种大爆发的时代。当时地球上存在一个潘诺西亚大陆(理论上的史前超级大陆,于前寒武纪时期分裂),但绝大多数地表均被海洋所覆盖,原始生物孕育其中,并已经出现了DNA物质和借助氧气呼吸的行为。正因如此,当寒武纪地球上出现了足够多的氧气,并且有越来越多的原始物种具备了相对复杂的物质结构以后,大量物种诞生了。
在寒武纪初期的短短几百万年里,众多无脊椎动物的集中诞生,它们形态各异、种类繁多,并且留给后世的出土化石数量惊人,古生物学家又将这一时期出现的物种大爆发称之为“寒武爆发”。“寒武爆发”所带来的直接后果就是地球上物种之间的生存竞争骤然激烈起来,食肉类动物出现了。而在此之前不同生物虽然相互竞争,却大体保持着互不干涉的生存状态。为此,许多动物为了生存而纷纷进化、逐渐演化出坚硬的重甲,硬壳类动物开始大规模出现在这颗星球之上了,奇虾是它们当中的佼佼者。
相较于其他硬壳类动物,奇虾进化出了在当时的动物世界堪称锋利无比的爪子,这是为了更好捕食猎物。它们在寒武纪的动物竞争中,凭借嘴边的32个重叠的吸盘结构以及那双所向披靡的利爪,能够接近和碾碎几乎所有猎物。凭借自己身体的优势,奇虾可以肆无忌惮的捕食周边生物,其体型也随之越来越大,甚至最长身型可达2米之巨,俨然成为寒武纪时代地球上当之无愧的霸主。然而好景不长,寒武纪末期的地球上发生了一次剧烈的生态变化,超过40%的物种突然遭受灭绝,这其中就包括了奇虾。据科学家推断,这次气候变化很可能是因为一次冰河时代的来临,从而引发大量物种无法承受温度的强烈突变而灭亡的。
奥陶纪:角石、海侵运动频发
关于奇虾灭亡的原因,可谓是众说纷纭。新物种淘汰说、环境恶化说、食物减少说、智力低下说等均在古生物界占据一席之地,更有人提出假说认为奇虾之所以后来消失了,是因为它们进化成了其他节肢动物。总之,作为寒武纪称霸地球的霸主,奇虾最终退出了历史的舞台,这给予了其他物种以机会。进入奥陶纪以后,随着冰河时代(指寒武纪末期的气温变冷阶段)结束,大量融化的雪水汇入海洋,从而导致海侵现象频发。所谓海侵现象又称为“海进”,是指因海面上升或陆地下降造成的海水对陆地大规模倒灌的地质现象。由于奥陶纪初期地球上发生了一系列地质、气候变化,影响了物种的生态结构,一种全新的生物开始走向霸主的舞台。
早在寒武纪时期,面对霸主奇虾的大肆掠食,许多物种就只能小心翼翼的生存,着重进化加强自身的防御能力,角石便是在此背景之下出现的物种。只是不同于其他硬壳类物种,角石在进化的过程中逐渐形成了一种全新的体态。它们将自己最柔弱的肉体藏匿于坚硬的甲壳之内,并将颇具杀伤力的腕足致于壳外,从而形成了一种拖着壳体的形态。不仅如此,由于成年角石的外壳直径足够大,最终会在壳体内部形成寄存肉体的前部住室和存储气体的后部气室,如此一来角石便可以凭借对气室的操作在水中更好的升降和平衡了。
相较于体态相对统一的奇虾家族,角石家族的形态可谓是千姿百态。它们当中有些壳体宛如圆盘一般,身长也仅有2.5厘米左右;有些则壳体笔直,身长亦可达到15厘米的样子;还有的角石身型巨大,即便是捕杀体长1.8米的巨型羽翅鲎都显得绰绰有余。正是最后这种被成为房角石的生物,凭借着足足有9米之长的体型成为奥陶纪海洋中的霸主。当然,相较于寒武纪时代奇虾独占鳌头式的霸主地位,奥陶纪时期逐渐出现了原始鱼类、珊瑚、三叶虫和原始章鱼等地质史上赫赫有名的动物,植物同样出现了新一轮物种迸发期。不过到了奥陶纪末期,由于太空中的伽马射线破坏了臭氧层,导致紫外线直接辐射地表,摧毁了大部分动植物,并造成地球上超过60%的生物灭绝。
志留纪:板足鲎、植物登陆生长
奥陶纪末期的紫外线辐射导致全球生态链发生了新一轮的洗牌,曾被奇虾、房角石长期压制的鲎类迎来了自己的春天。这时期的鲎类属于海洋生物链底层的物种,通常被统称为板足鲎类。相较于寒武纪时期为了躲避奇虾的掠食而尽量缩小的身躯,奥陶纪时期板足鲎已经进化出更为坚硬的外壳。它们的前端双足逐渐演化成为尖锐的利钳,附肢亦演化成为兼具呼吸和运动作用的肢体,这促使板足鲎能够在海洋中更加灵活的游动。只不过,奥陶纪时期的板足鲎进化方向更多的是针对曾经的天敌奇虾进行的,它们甚至进化出巨型羽翅鲎这种身长足足有1.8米的庞然大物,却在还是遭到奥陶纪霸主房角石的压制。
直至志留纪的来临,板足鲎再度进化成为体长达3米的广翅鲎。只不过这种身型巨大,被古生物学家冠名以“帝鲎”的物种存在严重的生存缺陷,俗称“脑残”。由于脑部存在发育缺陷,广翅鲎甚至会与自己的天地鹦鹉螺(一种喜欢吃广翅鲎卵的渺小生物)一样食用同类的卵,最终陷入灭绝的境地。不过其他板足鲎却借助奥陶纪大灭绝期间,地球出现的海面剧烈起伏完成了对角石家族的反超。毕竟相较于运动能力极差的角石来说,板足鲎要显得灵活许多。也正是凭借灵活的肢体,志留纪期间逐渐有板足鲎开始了征服陆地的脚步。
不仅是板足鲎,藻类植物同样也开始了向陆地蔓延的步伐,这说明促使海生动植物转移栖息地的因素是广泛存在于地球各处的。人们相信大气层中的气体成分变化以及由此造成的气候变化是生物转战陆地的重要因素,这次发生于志留纪晚期的气候变化导致了大约30%的地球生物灭绝,所幸的是有颌鱼类存留了下来。所谓有颌鱼类同样是志留纪晚期诞生的一类物种,它们始一出现就对板足鲎造成了碾压式的打击,并成功将后者从地球生物霸主的位子上拉下马。当然,虽然经过了气候骤变和有颌鱼类掠食的双重威胁,板足鲎依旧留存了部分品类,并在随后的地球物种演化中繁衍生息,寻找到自己的一席之地,蜘蛛(陆生板足鲎后裔)正是其中的佼佼者。
泥盆纪:邓氏鱼、海西运动
从4亿年前开始,地球进入了泥盆纪时代,这也是鱼类大幅度进化的岁月。作为海生动物的它们一方面在海洋中开疆扩土,并逐渐碾压了包括三叶虫在内的众多族群,另一方面它们当中的某些鱼类的鳍开始逐渐演变出坚硬的翅片,从而拥有了足够爬行到陆地的能力,开始向爬行动物和两栖动物进化。
事实上,早在志留纪时期就已经有一种鱼类为了能够与当时的霸主板足鲎抗衡,进化出了密度远胜先前所有物种的甲胄,具备了针对后者的装备优势,它便是邓氏鱼。正是由于惊人的防护能力,泥盆纪时代的邓氏鱼几近于无敌,在海洋中逐步挤压了板足鲎的生存空间,并发育成为身长可达11米、足有4吨重、咬合力高达5吨的庞然大物。
作为泥盆纪时代最大的海洋猎食者,实力强劲的邓氏鱼也因此被古生物学家们冠以“恐鱼”的尊号,然而这并不能避免它们走向灭亡的命运。和先前几个纪元晚期一样,泥盆纪晚期同样也出现了大规模长时间的物种大灭绝事件,但却呈现出两个高峰,分别发生于泥盆纪晚期的法门阶(“系纪”下细分“统世”、“统世”细分为“阶期”)早期以及泥盆纪与石炭纪交接之际。两个阶段之间相差了足足100万年,这场大灭绝事件也因此造成大约78%的海洋生物灭绝。
海西运动是这次灭绝事件的主因,大量地震和火山喷发产生了各种喷岩浆,烧死或毒死了许多鱼类,即便是活下的物种也因缺氧而逐渐被闷死。这些灾难最终迫使更多的物种开启了登陆历程,早期陆生脊椎动物海纳螈就是在此时登上陆地的。
石炭纪:昆虫、蕨类植物繁盛
虽然称为螈,但海纳螈并不是两栖类动物,它们曾被认为是由海底的一种鱼类(头甲鱼)演变而来的,其实是由肉鳍鱼类演化而来。另外,相较于同时期的其他登岸物种,海纳螈构造复杂的肺脏促使其具备了无与伦比的优势。原来,泥盆纪晚期演化出来的大型陆生植物(主要是指森林树木)开始将丰富的氧气排放到大气之中,拥有许多肺泡的海纳螈因此可以加强换气效率,从而拥有更大的优势在陆地环境下栖息。
事实上,海纳螈的肺脏结构与现代陆栖脊椎动物相似,它也正是人类和其他四足动物的祖先。当不可一世的邓氏鱼因大灭绝事件而退出历史舞台之时,整个海洋物种狼藉遍地,鱼类也在进入石炭纪之后短暂退出了海洋物种的主流序列。由于海水中含氧量的变化,身形渺小的菊石暂时成为海洋当中最为普遍的生灵,然而真正开始称霸地球的却另有其他。
前文提及,早在志留纪时期就有部分板足鲎家族登上了陆地,进入石炭纪以后进化出能够海陆两栖的巨型古广翅鲎,这也是进化史上最大的水生节肢动物。这类巨型古广翅鲎虽然远不如它们当年的祖先,但在缺乏天敌的大环境下依旧能称霸一方,只是巨型古广翅鲎并非当时地球上唯一的主宰。
随着植物在陆地的大量繁衍,它们同样出现了不同程度的进化。很显然,木质化的维管组织更有利于植物在土壤中扎根和汲取养分,蕨类植物就这样大量出现了。蕨类植物的诞生对于地球物种演化史和地质演变史均具有划时代的意义,这是因为它们可以将地表的大量碳元素吸收固定在自身的木质躯体中,并伴随着木质残骸逐步沉淀为化石和煤炭资源,石炭纪因此而得名。问题在于,当时地球上的生态链中并未出现能够分解这些物质的微生物,这就导致大量碳元素被深埋地底,大气层中的二氧化碳急剧下降,相应的氧气含量开始急剧攀升。高浓度的氧气孕育出一系列巨虫,在水中的巨型古广翅鲎的体长可达2.4米,丛林深处的巨型马陆(又称“远古蜈蚣虫”)有大约3米长,然而最为著名的还是巨脉蜻蜓,它也是已知地球上曾出现过的最大昆虫物种。
巨脉蜻蜓的翅长就有0.75~0.95米长,其时速最高可达60千米,堪称石炭纪时期的雄鹰。相较于往前和往后的地球霸主,石炭纪的霸主不论是防御力还是进攻性都要脆弱许多,它们庞大的身躯只能依托于当时浓郁的氧气密度,所以当冰河时代再度到来之后,灭绝事件又一次来临了。气温下降导致大量热带雨林的消亡,丧失食物引发大批动物(动物呼吸作用能够消耗氧气、产生二氧化碳)灭绝,从而导致二氧化碳比重陷入地球有史以来最低比重、而氧气含量持续增加,甚至一度高达40%左右。作为一种助燃气体,随着冰河时代的结束和气温的再度回暖,再难发生了。
二叠纪:引螈、异齿龙(二组牙齿)、盘古大陆
由于石炭纪末期,地球大气层的富氧化严重,导致当气温重新回暖至某个临界点时,地球宛若被点燃一般,高浓度的氧气助长了火势。多年的焚烧所产生的大量有毒气体荼毒地球近万年之久,氧气含量的下降也导致石炭纪时代依靠高度氧气含量发展起来的许多物种面临灭绝或 成更为渺小体型的境遇。大量巨虫皆因烈火、毒气和缺氧的困扰而走向灭绝,然而板足鲎在这场浩劫中存活了下来。只是由于过早的将附足进行行动和呼吸的绝对隔离,此时的板足鲎再难有潜能可以挖掘,进化方向大体定型。厚重的甲壳导致它们步履蹒跚,再难重振雄风了,于是水栖板足鲎很快泯灭于随后的物种竞争中。
步入二叠纪之后,海洋当中的鱼类再度崛起(取代了菊石),浅水则逐渐被两栖类和爬行类动物占据(取代了水栖板足鲎)。至此,板足鲎仅有陆生一系繁衍进化,并延续至今,不过很显然的是蜘蛛在如今的生态链中的地位是远远无法与其先祖相提并论的。
作为地球有史以来作为强大的昆虫,巨脉蜻蜓早在石炭纪中后期就已经遭遇到自己的天敌了,那便是爬行动物引螈。引螈生活在距今2.86亿年前至2.45亿年前,是一种陆生爬行类食肉动物,很大程度上靠鱼生存,可能也以陆上脊椎动物为食料,对于巨脉蜻蜓同样也毫不留情。只是在石炭纪末期的大灭绝中,它们与巨脉蜻蜓一样遭受劫难,仅仅留下了部分火种,并在地球生态逐渐平稳之后走向了王座。
只不过,引螈在二叠纪时期称霸的时日非常短暂,很快他们便被一种新的生物所取代了,异齿龙成为二叠纪统治陆地时间最长的物种。中文古生物学上被称作“异齿龙”的物种有两个,其中一个存在于侏罗纪时代(Heterodontosaurus,因有三种牙齿,取意为“不同齿的蜥蜴”),另一种便是二叠纪时代的主宰了(Dimetrodon,因有两组大小不样的牙齿,取意为“两种标准牙齿的动物”),名称的相同仅仅是因为翻译的问题。
虽然被冠以“龙”的称号,但二叠纪异齿龙却并不属于爬行类动物,恰恰相反的是它们与哺乳类有着更为密切的关系。在它们背上进化出的高大背帆,能够很好的帮助异齿龙在干旱炎热的二叠纪调节自身的温度。正当陆生动物为了争夺陆地霸主展开激烈争斗之时,二叠纪的海洋依旧处于混乱的生态破坏和恢复的循环之中,未能角逐出颇为强势的捕猎者。及至二叠纪末期,海洋中甚至再度爆发大灭绝事件,并导致近乎95%的海洋生物就此消失。至此,陆地生物在地球生态链中的比重越来越高,而曾经分裂的地球不同板块也又一次构成了一个整体,即“盘古大陆”。
盘古大陆的存在有助于地球上陆生动植物的快速扩散,同样也使得围绕陆地霸主的竞争更加激烈。从二叠纪晚期开始,另一种与哺乳类关系密切的物种开始崛起了,它们就是丽齿兽(合弓纲,仍然属于爬行类,俗称“半龙半兽”)。丽齿兽拥有极为锋利的犬牙,这是他们击败异齿龙的杀手锏。可是伴随着二叠纪末期“温室效应”的出现,地球生态再度发生剧烈变化,土壤系统崩溃、氧气浓度下降、森林消亡,加之又发生了西伯利亚地盾事件(可能是因陨石撞击引发的大规模火山喷发),丽齿兽很快就灭绝了。
三叠纪:恐龙时代1.0、裸子植物
趁着诸多王者灭绝的空袭,一种名为犬颌兽的物种在三叠纪时期开始崛起。与引螈、异齿龙和丽齿兽一样,犬颌兽同样是一种与哺乳类关系密切的爬行类动物,属于“半龙半兽”的范畴之内。与此同时,海洋在经过一系列灭绝事件后终于缓过劲来,旋齿鲨成为新的海洋霸主。只不过无论是犬颌兽还是旋齿鲨,都没有通过拼杀,而是通过捡漏的方式登顶陆地和海洋的王座,终究缺乏了进化的动力,难以持久。
到了三叠纪中期,恐龙开始崛起,陆地上犬颌兽遭到各类崛起恐龙的屠戮,“半龙半兽”家族很快步入衰落,但却也进化出体型较小的哺乳类后裔继续繁衍生息,等待时机。海洋中,旋齿鲨同样遭到爬行类的毁灭性打击。鱼龙的祖先原本是业已登陆上岸的爬行动物,却再度下水制霸海洋,这一点与后来的蛇颈龙(水生爬行类)、鲸(水生哺乳类)和海豚(水生哺乳类)一模一样。
恐龙的出现和崛起即将为生物进化史描绘出浓墨重彩的一笔,哺乳类祖先的蛰伏亦将写下地球历史进程中最为传奇的篇章。三叠纪末期,盘古大陆即将分裂,地壳运动和火山喷发频繁,并再度改变了空气的组成。更为重要的是,裸子植物不断的扩展和繁盛,为众多大型食素恐龙提供了丰富的储粮。
侏罗纪:恐龙时代2.0、鸟类诞生
适宜的气候、充裕的植物不仅为恐龙的演化提供了优越的条件,促使陆地上先后涌现出南十字龙、迷惑龙、梁龙、腕龙等诸多物种,同时也让水里的鱼龙和空中的翼龙获得极大的发展和进化。与动物一样,整个侏罗纪时代的植物也处于不断繁盛的状态,苏铁类、松柏类和银杏类不断丰富和壮大地球的植被面积,也促使食草性恐龙的身躯越来越巨大。
另一个变化发生在小型兽脚类恐龙族群当中,这些小型恐龙为了更好的存储身体中的热能进化出了羽毛。起初这些遍布全身的羽毛仅仅是酷似软管的柔软绒毛,但是很快就演变成为扁平式的羽翼。正是这些身材轻盈的恐龙逐渐进化,并最终展翅翱翔到天空,成为现代鸟类的祖先。鸟类诞生的意义重大,它们进一步丰富了地球生态圈,并在恐龙时代末期占据了天空霸主的地位,直至今日。
白垩纪:恐龙时代3.0、被子植物
相较于先前历次纪元末期的物种大灭绝时间,侏罗纪晚期晚期大灭绝事件的威力就要弱小许多,并且主要集中于海洋中。事实上,即便是海洋生物,也仅有20%左右的物种灭绝了。恐龙、鸟类和裸子植物繁盛于侏罗纪,到了白垩纪时期获得了进一步的壮大。比如白垩纪时期陆地上最为凶猛和著名的当属霸王龙了,而当时制霸海洋的同样是水生爬行类动物,其中就包括了混龙类的上龙和海生蜥蜴类的沧龙,它们身长甚至超过了15米。此时的天空依旧被翼龙所占据着,然而鸟类的优势也愈发明显。
承袭自侏罗纪时期的生态特征,白垩纪中前期的地球上,裸子植物和少量蕨类植物是最为繁盛的植物种类,也正是这两类植物为陆地上的恐龙提供了数量巨大的食粮,而它们都属于原始的三碳植物范畴。所谓三碳植物是指这类植物当中的导管和纤维尚不完全,其光合作用远不如后来出现的四碳植物(主要指被子植物)。也正是因为三碳植物的木质化程度较低,反而更容易被动物消化吸收,加之侏罗纪和白垩纪的氧气含量依旧不少,也就促使恐龙等一系列以此为食的动物进化出庞大的身躯,继而导致许多食肉型动物也随之出现体型巨化特征。
由于地球上存在大量裸子植物和蕨类植物这样优质的能量来源,为了更为高效的获取食物,许多食草型动物(以蜥脚类恐龙为主)逐渐退化了咀嚼功能,转而以颈部进行一种极低耗能的进食。另一方面,兽脚类恐龙(包括由其进化形成的鸟类)的身体里拥有一套十分有效的呼吸系统,即肺部特殊的气囊结构能够促使它们在呼气和吸气之时,均能吸收氧气进入肺部。这种结构的肺部呼吸方法,被称为“双重呼吸”,其摄取氧气的效率是哺乳动物的2.5倍。如此高氧气浓度的空气和丰富的三碳植物共同促进了恐龙的壮大,奠定了其地球霸主的地位。
然而,正所谓“成也萧何、败也萧何”,对于三碳植物的依赖以及对氧气含量的高效利用在地球再度出现气候剧变之时,也就成为了恐龙家族的巨大弱点。白垩纪后期,鸟类不断驱赶翼龙并占据了天空。伴随着陨石、地壳运动等现象,地球上出现了氧气含量下降和大量扬灰的状况,严重影响了植物的生长。此时,相较于三碳植物,以被子植物为代表的四碳植物凭借更为高效的光合作用系统脱颖而出,逐渐成为陆生植物的主流。
此时,地球上绝大多数巨型食草性动物均已退化了咀嚼功能,难以吸收木质化程度更高的被子植物,加之氧气含量和气温变化速度太快,被迅速挤出了生态圈。在这一轮的生态洗牌中,哺乳动物凭借渺小的体型(对能量摄入需求小)、发达的咀嚼功能(恐龙时代恶劣的生存环境所致)逐渐在全新的生态链中占据了重要席位。
新生代:哺乳纲崛起、被子植物
白垩纪是中生代的最后一个系纪,其末期的大灭绝事件直接终结了恐龙时代,并重塑地球生态圈。巨型爬行动物的时代宣告终结,鸟类和哺乳类凭借渺小的身躯走进了古近纪(新生代的第一个系纪)时代。相较于鸟类,哺乳类的生存适应能力更为突出,它们当中甚至还分化出能够在天空飞翔的蝙蝠和重新适应海洋的鲸类。此后进入新近纪时期,地球上的生物界总体面貌与现代更加接近,哺乳动物中的灵长目开始逐步发展壮大。
所谓灵长目,是哺乳纲下的一个目,其主要特征就是大脑发达、手和脚的趾(指)分开、大拇指灵活、多数能与其他趾(指)对握。当时,相当多的哺乳类动物延续了此前奇虾、房角石、邓氏鱼和恐龙等历代地球霸主的步伐,走上了体型巨大化的道路,比如猛犸、剑齿虎、乳齿象和雕齿兽等等。然而伴随着冰期来临,地球上的许多植被变成了针叶林和草地,大量巨型哺乳动物因此灭绝。
草类的出现对灵长类的进化意义非凡,正是由于草地对森林的阻隔,才促使人类的祖先不得不跳下大树,奔向远方寻找新的栖息之所。为了避免在广袤的草地中遭受猛兽的袭击,它们时不时会停下脚步、站立眺望,以防不测,并最终成为能够站立行走的类人猿。从此,人类的先祖开始披荆斩棘、履步坚冰,为了自己的时代而开拓进取。
十、世界上最小的国家是哪个国家?
世界上最小的国家是梵蒂冈 ,位于意大利首都罗马境内,其领土面积仅为0.44平方公里。是意大利的“国中之国”,是国际公认的世界上最小的国家,但这里有世界最大的天主教堂——圣彼得大教堂,有驰名世界的梵蒂冈博物馆,还有自己的货币。
梵蒂冈著名景点介绍
梵蒂冈博物馆
位于罗马市中心的天主教国家梵蒂冈,是世界上最小的国家的博物馆。 梵蒂冈博物馆有六公里的展示空间,著名的西斯廷教堂(Sistine Chapel)就在其中是欧洲排名第三或第四的艺术殿堂。博物馆总面积达5.5万平方米,前身是教皇宫廷,主要用于收集和保存稀世文物和艺术珍品。