数列的知识有那些?麻烦列一下!~

bdqnwqk2天前学者2

一、数列的知识有那些?麻烦列一下!~

有等差數列,等比數列,常數列.

二、数列的通项和求和的知识点需要注意的有:

数列的通项公式与求和的常用方法

高考要求

数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项 通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法

重难点归纳

1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性

S1,n12 数列{an}前n 项和Sn与通项an的关系式 an= SS,n2n1n

3 求通项常用方法

①作新数列法 作等差数列与等比数列

②累差叠加法 最基本形式是

an=(an-an-1+(an-1+an-2)+„+(a2-a1)+a1

③归纳、猜想法

4 数列前n项和常用求法

①重要公式

1+2+„+n=1

2n(n+1)

1

612+22+„+n2=n(n+1)(2n+1)

113+23+„+n3=(1+2+„+n)2=4

②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn n2(n+1)2

③裂项求和 将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项 应掌握以下常见的裂项

1

n(n1)1

n1

n1,nn!(n1)!n!,

1111sin2ctgαctg2α, 1r1rCnCCnnn,(n1)!n!(n1)!等

④错项相消法

⑤并项求和法

数列通项与和的方法多种多样,要视具体情形选用合适方法

典型题例示范讲解

例1已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

三、数学数列公式总结?

有等差数列、等比数列的通项公式、前 N 项和公式等等。

四、求高中数学指数函数和数列的知识总结

指数函数的定义:形如“f(x)=a∧x”的就是指数函数,且要求:a>0且a≠1。

当0<a<1时,该指数函数为减函数;当a>1时该指数函数为增函数。

指数函数恒过定点(0,1),值域(0,+∞),定义域R。

数列:

等差数列:an=a1+(n-1)d,Sn=(a1+an)n/2

等比数列:an=a1*[q∧(n-1)],Sn=(a1-an)q/(1-q) 【注:这个公式是在q≠1的时候用】

或a1=a2=...=an,Sn=a1 ∧n

已知Sn求数列an通项公式:a1求出来;n≥2时an=Sn- S n-1;再把a1代入看看是否符合n≥2时的所求通项公式。

a n+1=p*an +q:第一步,两边同时相加q/(p-1);第二步,得到(an+q/(p-1))是等比数列,接下去求a1,公比q/(p-1),得到an+q/(p-1)的通项公式,再两边同时减去q/(p-1)得到an的通项公式。

其他的一些问题就具体问题具体分析吧

五、初中数列知识

等差等比两数列,通项公式n项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从k向着k加1,

推论过程须详尽,归纳原理来肯定。

六、谁能帮我补一下数列知识

等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

通项公式

等差数列的通项公式为:an=a1+(n-1)d (1)

前n项和公式

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)

以上n均属于正整数。

推论

1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

2. 从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

若m+n=2p,则am+an=2ap

4.其他推论

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

(1)等比数列的通项公式是:An=A1*q^(n-1)

若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

(2)求和公式:Sn=nA1(q=1)

Sn=A1(1-q^n)/(1-q)

=(a1-a1q^n)/(1-q)

=(a1-an*q)/(1-q)

=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)

(前提:q≠ 1)

任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}