初中数学要怎么掌握知识点?

bdqnwqk1天前百科1

一、初中数学要怎么掌握知识点?

上课认真听讲``不明白问老师``多和同学交流`讨论难题`` 多练习和多看一些习题看看别人是怎么做的。就OK了

二、数学初中知识点总结归纳

初中生学习数学要特别注意知识点的总结,下面为大家总结了初中数学重点知识点,仅供大家参考。

有理数 1.有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2.有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3.有理数混合运算的四种运算技巧

转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

整式的加减 1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

实数 1.平方根

平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根。

2.立方根

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。

立方根性质

①在实数范围内,任何实数的立方根只有一个

②在实数范围内,负数不能开平方,但可以开立方。

③0的立方根是0

3.实数

实数,是有理数和无理数的总称。实数具有封闭性、有序性、传递性、稠密性、完备性等。

分式方程的解法 1.一般解法:去分母法,即方程两边同乘以最简公分母。

2.特殊解法:换元法。

3.验根:由于在去分母过程中,当未知数的取值范围扩大而有可能产生增根.因此,验根是解分式方程必不可少的步骤,一般把整式方程的根的值代人最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去。

说明:解分式方程,一般先考虑换元法,再考虑去分母法。

全等三角形的判定定理 1.边边边:三边对应相等的两个三角形全等。

2.边角边:两边和它们的夹角对应相等的两个三角形全等。

3.角边角:两角和它们的夹边对应相等的两个三角形全等。

4.角角边:两角和其中一个角的对边对应相等的两个三角形全等。

5.斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

图形的初步认识 1.几何图形:即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。

2.平面图形:平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形等。

3.立体图形:是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。

4.展开图:有些立体图形是有一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形,这样的平面图形称为相应立体图形的展开图。

5.点,线,面,体

(1)图形是由点,线,面构成的。

(2)线与线相交得点,面与面相交得线。

(3)点动成线,线动成面,面动成体。

一元一次方程 1.定义:

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

2.解一元一次方程的步骤

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1

三、人教版初一数学知识点

抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。

二、记住

三、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。必要的基础知识是熟练解题的关键。

四、形成良好的思维品质是理解数学问题的基础数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。

那么什么是良好的思维品质呢?我们以生活中“串门”这种现象为例来说明。许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。有一天你不得不自己去某人家串门。当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。

在学习过程中,我们就经常出现这样的现象。在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。而一让同学们自己做题,又不知从何入手了。主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。另外,要注意作好笔记。培根在《论求知》中说:“作笔记能使知识精确。如果一个人不愿做笔记,他的记忆力就必须强而可靠”。要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。

以上从四个方面谈了如何学好初中数学的问题。要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。真正掌握数学学习的要领。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。

很不错哦,你可以试下

jvrgНa恭ぇe』Кu蔻cn(li/8/9 17:58:45