初一数学知识点
初一数学知识点精选1 1.同类项――所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6.整式的除法
1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解――把一个多项式化成几个整式的积的形式
1)提公因式法:(公因式――多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2)公式法:A.平方差公式;B.完全平方公式
初一数学知识点精选2 一、目标与要求
1.了解正数与负数是从实际需要中产生的。
2.能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;
4.了解倒数概念,会求给定有理数的倒数;
5.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法
二、重点
正、负数的概念;
正确理解数轴的概念和用数轴上的点表示有理数;
有理数的加法法则;
除法法则和除法运算。
三、难点
负数的概念、正确区分两种不同意义的量;
数轴的概念和用数轴上的点表示有理数;
异号两数相加的法则;
根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定。
知识点、概念总结
1.正数:比0大的数叫正数。
2.负数:比0小的数叫负数。
3.有理数:
(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
初一数学知识点精选3 (一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆等.
主(正)视图---------从正面看
2、几何体的三视图 侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
图形 直线 射线 线段
端点个数 无 一个 两个
表示法 直线a
直线AB(BA) 射线AB 线段a
线段AB(BA)
作法叙述 作直线AB;
作直线a 作射线AB 作线段a;
作线段AB;
连接AB
延长叙述 不能延长 反向延长射线AB 延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点.
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.
6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上 (2)点在直线外.
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β 锐角 直角 钝角 平角 周角
范围 0