针对五年级知识特点分析:五年级该如何学奥数?

bdqnwqk8小时前问题1

针对五年级知识特点分析:五年级该如何学奥数?

较四年级之前的专题,五年级新增加数论、比例解行程、几何等较难的知识点,这些变化使得很大一部分刚刚升入五年级专题的孩子不适应知识的难度和学习的节奏。另外,知识点的扩容和难度的升高,需要孩子对知识理解的程度还需要进一步加深,唯有将这些知识彻底吃透了才能在将来的学习、杯赛中得心应手。 二、五年级上学期的学习方法和思路 面对数论、分数百分数等专题的加入,以及比例解决应用题难度的增加,五年级学生需要从三四年级“听课+完成作业”的学习方法和习惯基础上进一步提高,总结知识点便成为了一个“法宝”! 总结老师讲过的知识点,总结做过的题型,在总结的过程中找到知识点或题型之间的联系,并注意它们的区别(难度上的不同、做题思考的角度等)。这样,面对考试难度的增加和知识点的综合,总结的越多,思考的越多,应对也一定会越自如。 另外,每次上课后,建议把老师讲过的例题再重新梳理一遍(可以提前复印一份讲义备用),当堂听懂了不等于会做了,避免出现题目稍稍变化就不会应付的情况。重新梳理+整理一遍能够达到及时巩固的效果,并能做到举一反三。 三、五年级下学期:竞赛高峰期、知识和能力的厚积薄发 五年级下学期最大的特点就是各种数学竞赛(证书)考试高峰期----迎春杯、走美、EMC、华杯赛、希望杯等。对于小升初的综合模拟六年级来说,五年级下学期也使是小学数学学习最为关键的时期,它关系到一年以后您的孩子是否可以顺利考入一流的重点中学。由于六年级就要转入小升初的复习阶段,所以五年级时如果基础知识还不够扎实的话,到小升初时也会力不从心。 四、五年级下学期---非常时期的学习指导 很多经历过五年级竞赛考试的孩子,从考场出来最大的感觉就是----“比四年级那时候考的难多了!”五年级的数论、行程和几何三大专题都已经提升到了小学阶段的最高难度(六年级是知识的综合考察),很多技巧和方法在四年级之前都没有练习过,这就需要五年级的学生在整个上学期积累的基础上,多做竞赛真题,多总结历年真题的重点和变化。 建议历年真题至少做两遍,第一遍只求做对,每一道题弄清楚思路,最终能够做对;第二遍则需要总结,按专题分类,同样一个类型的题目,看看哪几年考过,都是从哪几个角度出题的,思路上有什么变化等。

小学五年级数学奥赛题

华罗庚数学学校五年级练习(三)1等差数列求和

一个数列,从第二个数起,每一个数减去它前面一个数的差是一个定数,这样的数列叫做等差数列,这个定数叫做公差。例如:

(1)1、2、3、4、5、……99、100 (2)1、3、5、7、9、……97、99

(3)4、10、16、22、28……82、88

以上三个数列都是等差数列,数列(1)的公差是1,数列(2)的公差是2,数列(3)的公差是6。数列中每一个数都称为数列的项,第一个数称为第一项,第二个数称为第二项,其余类推。如果一个数列的项数是有限的,我们就把第一项称为首项,最后一项称为末项。

等差数列的和=(首项+末项)×项数÷2 末项=首项+公差×(项数—1)

首项=末项—公差×(项数—1) 项数=(末项—首项)÷公差+1

例1 1+3+5+7+……+1997+1999=? 例2 求首项为5,末项为155,

项数为51的等差数列的和。

例3 有60个数,第一个数是7,从 例4 数列3、8、13、18、……

第二个数开始,后一个数总比前 的第80项是多少?

一个数多4,求这60个数的和。 例5 3+7+11+……+99=?

例6 一个15项的等差数列,末项为110,公差为7。这个等差数列的和是多少?

五年(三)下盈 亏 问 题

1、一个植树小组去栽树。如果每人栽5棵,还剩下14棵树苗;如果每人栽7棵,就缺少4棵树苗。这个小组有多少人?一共有多少棵树苗?

2、学校买了若干个篮球,平分给各班。如果每班分4个,则多余14个;如果每班分5个,则正好分完。学校买了多少个篮球?有多少个班?

3、燕西街道幼儿班给小朋友们分苹果。如果每人分6个,则缺少72个;如果每人分4个,则正好分完。求这个幼儿班的小朋友人数和所分苹果的总数。

4、某车间拟订生产计划,预定生产机件若干。如果每组完成16件,可以超额6件;如果每组完成15件,尚能超额2件。这个车间预定生产机件多少件?工人有多少组?

5、四年级(1)班以铅笔奖励优秀生。每人奖14支,则缺19支;每人奖12支,则缺11支。这个班有几名优秀生?有多少支铅笔?

6、小华每天早晨7点从家出发到学校上学。如果每分走60米,则要迟到6分;如果每分走80米,则可以提前3分到校。从家出发需走多少分准时到校?小华家离学校有多少米路程?

7、在桥上用绳子测量桥的高度,把绳子对折后垂到水面时还余5米,把绳子三折后垂到水面还余2米。求桥高和绳长。

五年级练习(四)上 按新定义运算

数学竞赛中,有一种要求按新定义进行运算的问题。这类题的特点是,规定了新定义的运算符号和新的运算顺序,要求按照新定义用新的运算方法进行一种新的运算。按新定义运算的题目,趣味性强,灵活度大,它虽与课本的数学知识不一样,但我们可以用所学的知识去解答。解答的关键是正确理解定义,并按新定义的关系式,把问题转化为我们所熟知的四则运算。解答这类题有助于提高我们的观察能力、分析能力、应变能力和运算能力。

例1 已知2 3=2+22+222=246,3 4=3+33+333+3333=3702,……按此规则计

算:(1)3 2; (2)5 3; (3)1 X=123,求X。

例2 已知A※B=(A+B)×(A—B), 例3 规定1※4=1×2×3×4,

求20※15的值。 6※5=6×7×8×9×10,那么 

(4※5)÷(6※3)=?

例4 规定[a、b、c、d]=9ab—cd, 例5 设a*b表示a的4倍减去b

如果[1、2、3、X]=3,求X的值。 的3倍,即a*b =4a—3b。

(1)计算:(1.5*0.8)*0.5;

(2)已知X*(5*2)=46,求X。

例6 如果A>B,那么[A,B]=A;如果A<B, 

那么[A,B]=B。试求(1)[8,0.8]; 

(2){[1.9,1.90],1.9} 例7 n为自然数,规定f(n)=3n—2,

例如f(3)=3×3—2=7。试求:

f(1)+f(2)+f(3)+……+f(100)

的值。

例8 如果1=1! 1×2=2! 1×2×3=3! …… 1×2×3……×100=100!

那么1!+2!+3!+……+100!的个位数字是( )。

华罗庚数学班五年级练习(四)下 还 原 问 题

1、有一个数,把它乘以5以后减去26,再把所得的差除以4,然后加上13,最后得29。这个数是几?

2、某车间按工人超产情况发奖金。将奖金全额的一半发给甲,再将剩下的一半发给乙,然后发给丙80元,发给丁7元,最后余下4元。这笔奖金共有多少元?

3、一位老人说:“把我的年龄数加上17,然后用4除,再减去15后乘以10,恰好是100。”这位老人有多少岁?

4、有甲、乙两数,甲数减去乙数的结果等于7;乙数加上甲数,然后乘以甲数,再减去甲数,最后除以甲数,其结果等于甲数。求甲、乙两数。

5、有一个卖桃子的人,拿了一篮桃子到各家销售:到第一家,先尝了一个,然后买去所余的一半;到第二家,又是先尝一个,再买去所余的一半;到第三家,还是先尝一个,买去所余的一半。这时篮子里还剩下35个桃子。原来这篮桃子共有多少个?

6、某人外出旅行,先用去旅费的一半多350元,回来又用去余款的一半少130元,到家还剩285元。他带去旅费多少元?

7、东兴机器厂有5个车间,今年计划生产车床比去年多一倍,结果比计划还超额480台。已知每个车间即使少生产120台,也能达到800台。这个厂去年生产车床多少台?

8、某数加上1,减去2,乘以3,用4除,结果得6。这个数是几?

五年级练习(五) 数 图 形

一个五边形,把它的对角线连成一个

五角星(如右图),图中一共有多少个三角

形?像这样的问题,就是图形的计数问题。

计数时要求做到既不重复,又不遗漏。